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Paper 0606/11 

Paper 11 

Key Messages 

Candidates should be reminded to read the instructions on the front of the examination paper carefully.  In 
particular, attention should be paid to the accuracy required especially when dealing with angles in degrees 
and angles in radians.  Candidates should be encouraged to check that they have actually completed the 
question by answering in full.  The use of a calculator for solution of quadratic equations is recommended as 
a check only; solution by either factorisation or use of the quadratic formula is expected to be shown as part 
of the solution of a question.  A similar approach may be used for questions involving surds. 

If a response to a question is written elsewhere in the question paper, or on additional paper, candidates 
should be advised to make an appropriate comment by the original question as to where the solution may 
now be found. 

General Comments 

The paper provided a good range of responses showing that many candidates had worked hard and 
understood the syllabus objectives, being able to apply them appropriately.  Candidates appeared to have no 
timing issues. 

Comments on Specific Questions 

Question 1 

(i) (ii) A number of candidates were unsure of the meaning of “period” and “amplitude” and many gave 
the answer 2 to both parts of the question. 

(iii) Most candidates obtained the mark for sketching the graph of sin2 .y x=  

Many sketches of 1 cos2y x= +  were incorrectly drawn as, although most started at a maximum of 

3 and ended at a minimum of –1, the intermediate stationary points were not also at those values. 

(iv) The majority appreciated that the answer to this question was related to the number of 
intersections of the graphs in part (iii). 

Answers: (i) 180   (ii) 2  (iv) 3

Question 2 

(i) Although candidates were instructed not to use calculators and to show all working in this question, 
many answers were offered showing no working at all. These were given no credit. 

(ii) These were a reasonably easy 3 marks for those who used 2 2sec 1 tan .θ θ= +   Those who worked 

out the length of the hypotenuse and 2
2

1
sec

cos
θ

θ
=  rarely got far enough to earn any marks. 

Answers: (i) 221+−   (ii) 2410 −
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Question 3 
 
(i) This part of the syllabus has clearly been taught well by most Centres.  The majority of candidates 

were able to gain full marks here; however a common mistake was to work out ( )32x as x5. 

 
(ii) Again, this was generally done well, although many candidates only saw two, rather than three, 

terms independent of x. 
 
Answers: (i) 2 4 664 192 240 160x x x+ + +   (ii) 1072 
 
Question 4 
 
(a) Nearly all candidates made a reasonable attempt here.  A few left the elements of their matrix in 

unsimplified forms, such as –8 + 0. Only a few attempted to find X2 by squaring each of the 
elements of X. 

 
(b) A number of different ways of solving this problem were offered by candidates.  Some found the 

inverse of A in terms of a and b, others inverted A-1, and only a few equated the product AA-1 to the 
identity matrix.  Most candidates gained full marks. 

 

Answers: (a) 
4 4 8

2 4

k
k k

− − 
 − 

  (b) a = 2, b = 4 

 
Question 5 
 
Most candidates were able to find the coordinates of the points A and B, and this question was a good 
source of marks for many, although a large number appeared not to understand the meanings of either 
“perpendicular” and/or “bisector”.  Consequently, many candidates found the equations of lines 
perpendicular to AB through either A or B rather than through the mid-point, or even lines of gradient 3 rather 

than  
1

3
− . 

 
Answer: 3y + x – 2 = 0 
 
Question 6 
 
(i) The remainder theorem was well-known by most candidates who were able to form and solve the 

two simultaneous equations in a and b.  Those who found only one equation and used the given 
value of b to find a were given little credit. 

 
(ii) The division of the cubic expression by the linear factor was generally done well.  Those who chose 

to do this by synthetic division frequently arrived at an incorrect quadratic which was twice the 
correct answer. 

 
(iii) It was hoped that candidates would evaluate the discriminant and deduce that there were no 

further real roots because it was negative.  Some candidates suggested, incorrectly, that as the 
quadratic would not factorise there were no further roots.  Others ignored the negative and gave 

two further roots in terms of 40 , presumably misinterpreting “real” as “rational”. 
 

Answers: (i) a = 14  (ii) ( )( )22 1 7 4 2x x x− − +  
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Question 7 
 
(i) Most candidates quoted and/or used the quotient rule correctly.  It was common to see the 

differential of ( )2ln 4 3x +  being given as 
34

1
2 +x

.  Otherwise the question was generally done 

well.  Approximation of  ln3−  to –1 lost accuracy marks. 
 

(ii) Most candidates attempted to use bh
2

1
 on the right-angled triangle AOB.  Finding the coordinates 

of B from their answer to part (i) was part of the solution which a few candidates performed 
incorrectly by assuming that  x = 0, rather than y = 0 on the x-axis. 

 

Answers: (i) ln3
ln3

xy = −   (ii) 31
(ln3)

2
 

 
Question 8 
 
(i) The concept of range was generally well understood. 
 
(ii) Most candidates could find the inverse of g, but the domain was often wrongly stated as x ≥ 5. 
 
(iii) The majority of candidates knew the correct order of operations for gf and how to solve the 

equation, but many lost the final mark by giving the answer as a decimal, rather than the exact 
answer required by the question. 

 
(iv) f ′  was misinterpreted by many as 1f − . 
 

Answers: (i) f(x) ≥ 3, g(x) ≥ 9  (ii) 2 5x− + − , x ≥ 9  (iii) 
1 4

ln
2 3

 
 
 

  (iv) 96 

Question 9 
 
(i) It was necessary either to show that the gradient of both the line and the curve at A was 3, or to 

show that the equation of the tangent to the curve at A was indeed y = 3x + 10.  It was not 
sufficient, as many candidates tried, to solve the equations of the line and the curve, leading to 
x = 0 or x = 5, without any further explanation as to why the line was a tangent. 

 
(ii) Most candidates successfully differentiated, equated to 0 and solved.  As only the x-coordinates 

were asked for, many wasted time by also finding the y-coordinates. 
 
(iii) Most candidates knew to integrate to find the area under a curve.  The most common error was to 

use a lower limit of 
3

1
 rather than 0. 

 

Answers: (ii) 3 and 
1

3
  (iii) 

99

4
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Question 10 
 

(i) Most candidates were able to reach 
1

sin
2

x =  leading to 30  and 150   but many did not use the 

negative square root to obtain the two other solutions. 
 
(ii) Those who used 2 2tan sec 1θ θ= − to obtain a quadratic equation in 3sec y were generally 

successful, more so than those who attempted to convert the equation to one in 3cos y using three 

separate identities.  The solutions 143.5  and 180  were frequently omitted. 
 
(iii) Many completely correct solutions to this part were seen.  Most candidates knew the correct order 

of operations to solve trigonometric equations of this type. 
 

Answers: (i) 30 , 150 , 210 , 330      (ii) 60 , 180 , 23.5 , 96.5 , 143.5     (iii) 
2 5

,
3 3

π π
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ADDITIONAL MATHEMATICS 
 
 

Paper 0606/12 

Paper 12 

 
 
Key Messages 
 
Candidates should be reminded to read the instructions on the front of the examination paper carefully.  In 
particular, attention should be paid to the accuracy required especially when dealing with angles in degrees 
and angles in radians.  Candidates should be encouraged to check that they have actually completed the 
question by answering in full.  The use of a calculator for solution of quadratic equations is recommended as 
a check only; solution by either factorisation or use of the quadratic formula is expected to be shown as part 
of the solution of a question.  A similar approach may be used for questions involving surds. 
 
Candidates should be reminded of the implication of the word ‘Hence’ in a mathematical context.  It is very 
often there to help them with the next step in a question, but is also often there as a particular method of 
solution is required, for example, solving simultaneous equations using matrices. 
 
If a response to a question is written elsewhere in the question paper, or on additional paper, candidates 
should be advised to make an appropriate comment by the original question as to where the solution may 
now be found. 
 
 
General Comments 
 
The paper provided a good range of responses showing that many candidates had worked hard and 
understood the syllabus objectives, being able to apply them appropriately.  Candidates appeared to have no 
timing issues. 
 
 
Comments on Specific Questions 
 
Question 1 
 
Most candidates made use of the discriminant ‘b2 – 4ac’ correctly in order to find the critical values.  Some 
candidates then stopped without continuing to find the range.  Those who used a sketch once they had 
found the critical values were generally successful in determining the correct range.  There were some 
candidates who got the wrong region and also a number who used two inequalities without making a clear 
indication that the intersection of the two sets of values was what was required.  Very few alternative 
solutions were seen. 
 
Answer: 102 <<− k   
 
Question 2 
 
There were many different but correct ways to complete the proof.  Some candidates seemed to understand 
the process but unfortunately missed out vital brackets, losing a mark.  Showing working correctly is of 
paramount importance in questions of this type.  Knowledge of identities and dealing with fractions within 
fractions was good in general.  It was pleasing to see that the great majority of candidates started with the 
left hand side of the expression and re-arranged it to obtain the right hand side of the expression.  Very few 
candidates chose to take terms from ‘one side to the other’. 
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Question 3 
 
The great majority of candidates were able to find the inverse matrix correctly and most proceeded to earn 
the final three marks of the question by using it correctly.  Very few errors were seen.  However, there were a 
significant number who ignored the instruction ‘hence’ and proceeded to solve the equations by a method of 
elimination which caused a loss of three marks for a very careless decision.  A small number attempted to 
post multiply by the inverse matrix.  Candidates should be aware of the importance of writing down matrices 
in the correct order when performing matrix multiplication. 
 
Answer: 3=x , 2−=y  
 
Question 4 
 
(i)  Many candidates are very proficient at questions involving circular measure and this question was 

no exception.  There were very few candidates who were unable to make a reasonable attempt at 
both parts.  The key to this particular question was finding the angle BOC .  Even if this was done 
incorrectly and the ensuing incorrect angle was subsequently used in both parts of the question, 
candidates were able to gain credit for correct methods used.  Because of the nature of the 
question, answers of differing accuracy were obtained during the various calculations but all these 
slightly different lengths/angles all gave an answer which rounded to 181.  Candidates should still 
be encouraged to work to an appropriate level of accuracy.  Most candidates were able to obtain a 
correct value for the required area. 

 
(ii)  Most candidates were able to correctly find the appropriate arc length and chord length.  

Unfortunately, some candidates chose to add on an ‘extra radius’ and in some cases an ‘extra 2 
radii’.  For those candidates who had been working at less than the required level of accuracy 
throughout, their work would yield an answer of 65.8, which was penalised by withholding the last 
accuracy mark. 

 
Answer: (i) 181 (ii) 65.7 
 
Question 5 
 
This seemed to be the question that was met with the least success.  Candidates tried many different 
methods to gain some marks here, few were able to obtain correct answers without using the standard 
responses that were to be expected.  The important decision to be made in each part was whether to 
consider permutations or combinations, a concept that some candidates do find difficult to deal with. 
 

(a) (i) Candidates were successful if they knew to use 6
8P . 

 

 (ii) Candidates were given credit if they realised that they had to use 4
6P  as part of a product. 

 
 (iii) Most commonly the correct answer came from 6

45 2 P× ×  (alternatives were rarely used), with 

credit again being given if candidates realised they had to use 4
6P  as part of a product. 

 

(b) (i) Many candidates tried to use 4
14C  and/or 8

14C  but not in a product, but rather as part of a sum. 

 

 (ii) Many candidates made a similar error to that in part (i) by choosing to add 4
8C  and 4

6C  instead of 

multiplying 4
8C  and 4

6C . 

 
Answer: (a)(i) 20 160 (ii) 2160 (iii) 3600 (b)(i) 210 210 (ii) 1050 
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Question 6 
 
(i)  This was well done by most candidates with the most common error being to truncate the answer 

to 13.8. 
 
(ii)  Most candidates were able to differentiate well and subsequently solve the resulting equation 

correctly.  Errors that were seen on a regular basis were 
4

10
2 +t

, 
4

20
2 +t

 and 
4

2
2 +t

t
, but credit was 

given for a correct approach.  There were a small number of candidates who somehow retained 
ln(t2 + 4) or forgot to differentiate –4t. 

 
(iii) Many candidates made this part more difficult than it was by not using the quotient rule.  Combining 

the two terms before differentiating and using the product rule invariably caused errors which 
resulted in an incorrect expression as well as far more laborious algebra.  Those who used the 
quotient rule generally did it well with a minus sign between two correct terms in the numerator.  A 
significant minority did not discard t = – 2. 

 
Answer: (i) 13.9 (ii) 1 and 4 (iii) 2 
 
Question 7 
 

(i)  Well done by most candidates.  The most common error was finding AD  rather than DA . 
 

(ii)  Well done by most candidates.  The most common error was finding BD rather than DB . 
 
(iii) Again, well done by most candidates, however, from a correct expression of ( )4λ +a b  the result 

on opening out the brackets often became 4 4 .λ λ+a b  
 
(iv) This was generally well done, but a number of candidates started again and did not make use of 

the previous parts. 
 
(v)  Most candidates did get the first method mark but then many did not know how to subsequently 

proceed, with a number attempting to divide vectors.  Of those who were aware of how to obtain a 
pair of simultaneous equations, errors in signs (usually μ− changing to μ  in the second equation) 

often prevented full marks.  Although this part of the question had been intended to be solved using 
vector methods, some candidates successfully made use of the properties of similar triangles to 
obtain a correct result. 

 

Answer: (i) 3 −a b  (ii) 7 −a b (iii) ( )4λ +a b  (iv) ( )3 4λ− + +a b a b  (v) 
11

4=λ , 
11

7=μ  

 
Question 8 
 
(i)  Candidates were often successful in part (i).  Errors came from a lack of knowledge of how to 

integrate rather than actual numerical errors; most commonly the incorrect responses were 
differentiated.  Occasionally the minus sign in the second term was omitted. 

 
(ii)  Errors in part (ii) were usually from incorrect signs.  A completely incorrect part (i) often meant no 

marks in part (ii) if the integral being used was not in the form xx ba 22 ee −+ . 
 
(iii) If the candidate was correct in part (ii) it usually followed that they would gain the two marks in part 

(iii),  The given answer was intended to enable candidates to check and thus correct incorrect work 
done in previous parts as well as help with the next part of the question. 
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(iv) This part of Question 8 was generally more successful.  Candidates were often able to form a 
quadratic equation and attempt to solve it.  The negative log was often rejected.  More commonly 
the candidate lost the final mark as they did not give the constants a and b but a decimal answer.  
This highlights the need for candidates to make sure that they have their answer in the required 
form. 

 

Answer: (i) xx 22 e
2

1
5e −−  (ii) 






 −−






 − −− kkkk 2222 e

2

1
5ee

2

1
5e  (iv) 

1 1
ln

2 11
k =  

 
Question 9 
 
This was a completely unstructured question which was designed to test the candidates’ knowledge of 
several syllabus objectives and form a logical approach to the solution of the problem.  Most candidates 
performed very well and most were able to get 7 out of the 8 marks available.  Common errors included the 

inability to differentiate x2cos  correctly, not finding the value of y  when 
4

π=x  and use of a tangent rather 

than a normal.  Many candidates produced perfectly correct solutions until the final step when they resorted 
to the use of a calculator to work out the required area, rather than give the exact answer as required.  Again 
this highlights the need of candidates to check that they are giving their answer in the correct form required. 
 

Answer: 
64

49 2π
 

 
Question 10 
 
(a) Most candidates were aware of the correct order of operations needed to provide correct solutions.  

However, some candidates forgot to deal with the square root and others forgot that a multiple 
angle was involved.  The most common error however, was not giving all the solutions, forgetting to 
deal with solutions obtained from use of the negative square root. 

 
(b) Usually done well by most, with the use of the correct identity and correct use of the relationship 

between ytan  and ycot .  Some candidates did not give all the appropriate solutions.  Candidates 

who adopted the approach of dealing with everything in terms of ysin  and ycos  were usually less 
successful, due to errors in simplification and subsequent factorising.  Accuracy of answers is an 
important aspect of solving trigonometric equations and some candidates lost marks as they chose 
to give their solutions to 3 significant figures rather than the required one decimal place. 

 
(c) Candidates are now showing good skills at the solution of equations of this type, especially 

involving radians.  Many completely correct solutions were seen and many solutions of just one 
correct angle were also seen. Candidates do still find it difficult to solve equations where their first 
solution is not in the range required. 

 

Answer: (a) o o o o15 , 45 , 75 , 105  (b) o o o o71.6 , 251.6 153.4 , 333.4  (c) 
π π11

,
2 6
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ADDITIONAL MATHEMATICS 
 
 

Paper 0606/13 

Paper 13 

 
 
Key Messages 
 
Candidates should be reminded to read the instructions on the front of the examination paper carefully.  In 
particular, attention should be paid to the accuracy required especially when dealing with angles in degrees 
and angles in radians.  Candidates should be encouraged to check that they have actually completed the 
question by answering in full.  The use of a calculator for solution of quadratic equations is recommended as 
a check only; solution by either factorisation or use of the quadratic formula is expected to be shown as part 
of the solution of a question.  A similar approach may be used for questions involving surds. 
 
If a response to a question is written elsewhere in the question paper, or on additional paper, candidates 
should be advised to make an appropriate comment by the original question as to where the solution may 
now be found. 
 
 
General Comments 
 
The paper provided a good range of responses showing that many candidates had worked hard and 
understood the syllabus objectives, being able to apply them appropriately.  Candidates appeared to have no 
timing issues. 
 
 
Comments on Specific Questions 
 
Question 1 
 
(i) (ii) A number of candidates were unsure of the meaning of “period” and “amplitude” and many gave 

the answer 2 to both parts of the question. 
 

(iii) Most candidates obtained the mark for sketching the graph of sin2 .y x=  

 

 Many sketches of 1 cos2y x= +  were incorrectly drawn as, although most started at a maximum of 

3 and ended at a minimum of –1, the intermediate stationary points were not also at those values. 
 
(iv) The majority appreciated that the answer to this question was related to the number of 

intersections of the graphs in part (iii). 
 

Answers: (i) 180o
 
 (ii) 2  (iv) 3 

 
Question 2 
 
(i) Although candidates were instructed not to use calculators and to show all working in this question, 

many answers were offered showing no working at all. These were given no credit. 
 

(ii) These were a reasonably easy 3 marks for those who used 2 2
sec 1 tan .θ θ= +   Those who worked 

out the length of the hypotenuse and 2

2

1
sec

cos
θ

θ
=  rarely got far enough to earn any marks. 

 

Answers: (i) 221+−   (ii) 2410 −  
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Question 3 
 
(i) This part of the syllabus has clearly been taught well by most Centres.  The majority of candidates 

were able to gain full marks here; however a common mistake was to work out ( )
3

2
x as x

5
. 

 
(ii) Again, this was generally done well, although many candidates only saw two, rather than three, 

terms independent of x. 
 

Answers: (i) 2 4 6
64 192 240 160x x x+ + +   (ii) 1072 

 
Question 4 
 
(a) Nearly all candidates made a reasonable attempt here.  A few left the elements of their matrix in 

unsimplified forms, such as –8 + 0. Only a few attempted to find X
2
 by squaring each of the 

elements of X. 
 
(b) A number of different ways of solving this problem were offered by candidates.  Some found the 

inverse of A in terms of a and b, others inverted A
-1

, and only a few equated the product AA
-1

 to the 
identity matrix.  Most candidates gained full marks. 

 

Answers: (a) 
4 4 8

2 4

k

k k

− − 
 

− 
  (b) a = 2, b = 4 

 
Question 5 
 
Most candidates were able to find the coordinates of the points A and B, and this question was a good 
source of marks for many, although a large number appeared not to understand the meanings of either 
“perpendicular” and/or “bisector”.  Consequently, many candidates found the equations of lines 
perpendicular to AB through either A or B rather than through the mid-point, or even lines of gradient 3 rather 

than  
1

3
− . 

 
Answer: 3y + x – 2 = 0 
 
Question 6 
 
(i) The remainder theorem was well-known by most candidates who were able to form and solve the 

two simultaneous equations in a and b.  Those who found only one equation and used the given 
value of b to find a were given little credit. 

 
(ii) The division of the cubic expression by the linear factor was generally done well.  Those who chose 

to do this by synthetic division frequently arrived at an incorrect quadratic which was twice the 
correct answer. 

 
(iii) It was hoped that candidates would evaluate the discriminant and deduce that there were no 

further real roots because it was negative.  Some candidates suggested, incorrectly, that as the 
quadratic would not factorise there were no further roots.  Others ignored the negative and gave 

two further roots in terms of 40 , presumably misinterpreting “real” as “rational”. 

 

Answers: (i) a = 14  (ii) ( )( )2
2 1 7 4 2x x x− − +  
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Question 7 
 
(i) Most candidates quoted and/or used the quotient rule correctly.  It was common to see the 

differential of ( )2
ln 4 3x +  being given as 

34

1

2
+x

.  Otherwise the question was generally done 

well.  Approximation of  ln3−  to –1 lost accuracy marks. 

 

(ii) Most candidates attempted to use bh
2

1
 on the right-angled triangle AOB.  Finding the coordinates 

of B from their answer to part (i) was part of the solution which a few candidates performed 
incorrectly by assuming that  x = 0, rather than y = 0 on the x-axis. 

 

Answers: (i) ln3
ln3

x
y = −   (ii) 31

(ln3)
2

 

 
Question 8 
 
(i) The concept of range was generally well understood. 
 

(ii) Most candidates could find the inverse of g, but the domain was often wrongly stated as x ≥  5. 

 
(iii) The majority of candidates knew the correct order of operations for gf and how to solve the 

equation, but many lost the final mark by giving the answer as a decimal, rather than the exact 
answer required by the question. 

 

(iv) f ′  was misinterpreted by many as 1
f
− . 

 

Answers: (i) f(x) ≥  3, g(x) ≥  9  (ii) 2 5x− + − , x ≥  9  (iii) 
1 4
ln

2 3

 
 
 

  (iv) 96 

Question 9 
 
(i) It was necessary either to show that the gradient of both the line and the curve at A was 3, or to 

show that the equation of the tangent to the curve at A was indeed y = 3x + 10.  It was not 
sufficient, as many candidates tried, to solve the equations of the line and the curve, leading to 
x = 0 or x = 5, without any further explanation as to why the line was a tangent. 

 
(ii) Most candidates successfully differentiated, equated to 0 and solved.  As only the x-coordinates 

were asked for, many wasted time by also finding the y-coordinates. 
 
(iii) Most candidates knew to integrate to find the area under a curve.  The most common error was to 

use a lower limit of 
3

1
 rather than 0. 

 

Answers: (ii) 3 and 
1

3
  (iii) 

99

4
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Question 10 
 

(i) Most candidates were able to reach 
1

sin
2

x =  leading to 30o  and 150 o  but many did not use the 

negative square root to obtain the two other solutions. 
 

(ii) Those who used 2 2
tan sec 1θ θ= − to obtain a quadratic equation in 3

sec y were generally 

successful, more so than those who attempted to convert the equation to one in 3
cos y using three 

separate identities.  The solutions 143.5o  and 180o  were frequently omitted. 

 
(iii) Many completely correct solutions to this part were seen.  Most candidates knew the correct order 

of operations to solve trigonometric equations of this type. 
 

Answers: (i) 30 , 150 , 210 , 330
o o o o   (ii) 60 , 180 , 23.5 , 96.5 , 143.5

o o o o o (iii) 
2 5

,
3 3

π π
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ADDITIONAL MATHEMATICS 
 
 

Paper 0606/21 

Paper 21 

 
 
Key Messages 
 
In order to do well in this paper, candidates need to show full and clear methods in order that marks can be 
awarded.  On occasion, drawing or marking information on a diagram is helpful, and candidates should be 
encouraged to do this.  In questions where the answer is given, candidates are required to show that it is 
correct and fully explained solutions with all method steps shown are needed.  In questions that require a 
solution of several steps, clearly structured and logical solutions are more likely to gain credit.  Omitting 
method steps through using a calculator often results in full credit not being given for a solution.  Candidates 
should be encouraged to write down any general formula they are using as this reduces errors and is likely to 
improve the accuracy of their solutions. 
 
 
General Comments 
 
Some candidates produced high quality work displaying wide-ranging mathematical skills, with well-
presented, clearly organised answers.  This meant that solutions were generally clear to follow.  Other 
candidates produced solutions with a lot of unlinked working, often resulting in little or no credit being given. 
 
Questions which required the knowledge of standard methods were done well.  Candidates had the 
opportunity to demonstrate their ability with these methods in many questions.  Most candidates showed 
some knowledge and application of technique.  The majority of candidates attempted most questions, 
demonstrating a full range of abilities. 
 
Some candidates need to improve their reading of questions and keep their working relevant in order to 
improve.  Candidates should also read the question carefully to ensure that, if a question requests the 
answer in a particular form, they give the answers in that form.  When a question demands that a specific 
method is used, candidates must realise that little or no credit will be given for the use of a different method.  
They should also be aware of the need to use the appropriate form of angle measure within a question. 
 
Where an answer was given and a proof was required, candidates needed to fully explain their reasoning.  
Omitting method steps in such questions resulted in a loss of marks.  Candidates should take care with the 
accuracy of their answers.  Centres are advised to remind candidates of the rubric printed on the front page 
of the examination paper, which clearly states the requirements for this paper.  Candidates need to ensure 
that their working values are of a greater accuracy than is required in their final answer. 
 
When asked for a sketch, many candidates plotted and joined coordinates, rather than making a sketch 
showing the key features.  Candidates would improve if they realised that this often resulted in diagrams that 
were of the wrong shape or incomplete.   
 
 
Comments on Specific Questions 
 
Question 1 
 
(a) Candidates used a variety of methods to answer this part of the question.  The most successful 

approach was to use the change of base rule.  This immediately gave a term in base 3, as 
required.  Alternative methods in other bases, for example x33

log  were only given credit when 

converted into the required base.  Candidates would improve by avoiding using these, less direct, 
methods to answer the question.  Methods which involve an increased number of steps increase 
the opportunity for errors to be made.  This was also true of those solutions which began by making 
use of the reciprocal.  On  occasion, the base of the logarithm looked like a multiple. 

 



Cambridge International General Certificate of Secondary Education 
0606 Additional Mathematics June 2015 
Principal Examiner Report for Teachers 

  © 2015 

(b) There were some elegant solutions where the required result was obtained in three or four lines.  
Some candidates who knew some of the rules of logarithms were unable to apply them to the 
question.  These candidates would do better if they attempted to apply their laws one at a time, 
rather than attempting to apply many together.  Many would also have made more progress if they 
had recalled that 1 could be written as aalog .  Some candidates anti-logged the given equation 

and then gave that as their final answer.  These candidates would have done better if they had 
appreciated that they should continue to simplify their answers where it is clear that further 
simplification can be done, such as in this case. 

 

Answer:  (a)  
3

log3 x
  (b)  y = 125a 

 
Question 2 
 
(a) Many candidates gave only one answer and this was usually for the part of the function with a 

negative gradient.  These candidates may have done better if they had extended the lines in the 
diagram and considered them separately.  While there were some correct second equations given, 
it was common for candidates to assume that the line with positive gradient was perpendicular to 
the line they had already found, resulting in lines with gradients of ±0.5.  Candidates also 
sometimes incorrectly gave their answer in the form of modulus functions.  This resulted in the loss 
of a solution as they had, in effect, made their answers the same. 

 
(b) Candidates should know the shape of the graph of an exponential function.  The curve demanded 

was a simple translation of e xy −= .  Candidates would have done better if they had thought of it in 

this way.  Many candidates attempted to plot points rather than sketch a curve.  This takes time 
and should not be necessary for a question of this type.  Poor choice of ‘scale’ at times led to 
curves approaching the x-axis.  Some candidates concentrated their efforts on the part of the curve 
in the first quadrant with no indication of what was in the second.  Candidates drew a variety of 
graphs, with straight lines, perhaps the most popular.  Many candidates identified the intercept with 
the y-axis as the point (0, 4).  Candidates should be aware that marks are awarded for the correct 
shape and positioning of graphs and that coordinates of intercepts alone, do not gain credit unless 
the graph is attempted also. 

 
Answer: (a)  f(x) = 2x − 4 and f(x) = −2x + 4    
 
Question 3 
 
(a) This question was well done by the majority of candidates.  Occasionally, one or two elements 

were miscalculated.  A few candidates attempted to find a 2 x 2 matrix.  A small number of 
candidates would have improved if they had taken more care with the order of operations required 
or had read the question more carefully. 

 
(b) Candidates were asked to state what was represented by certain matrix products, rather than to 

evaluate them.  This was challenging for many.  Many candidates gave clear and concise 
statements that were easy to credit.  Other candidates misinterpreted what was required, 
sometimes thinking that identifying the order of the resultant matrix was sufficient.  While much 
leniency was given in the use of terms to indicate value, candidates needed to be clear regarding 
whether the matrix they were describing represented the total value of the stock in each shop (as 
in part (b)(i)) or the total value of the stock in all the shops (as in part (b)(ii)).  Simple statements 
are generally the best solutions to such questions, as answers which offered more description often 
became ambiguous or contradictory.  Some candidates found evaluating the matrix product useful.  
Others became confused and related the values to the 4 different types of television rather than 
shops.  It was not uncommon for candidates to reverse the answers to part (b)(i) and part (b)(ii). 

 

Answer:  (a)  






 −
1034

628
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Question 4 
 
 (i) This was generally well attempted.  Many candidates recalled that the angle between radius and 

tangent was a right-angle and used the tangent ratio.  Others found other relevant angles correctly 
and used the sine rule.  Some candidates gave lengthy solutions involving calculating numerous 
interim lengths.  These methods were not always successful as the extra steps needed introduced 
a greater risk of making an error.  A few candidates selected incorrect trigonometric ratios. 

 
 (ii) Most candidates made a good start to this question.  They realised that the area of a sector was 

relevant and applied the formula correctly.  There was no uniform method favoured for calculating 
the required area. “Kite minus sector” was most common, with the area of the kite being found by 
various methods.  Some candidates calculated the lengths of the diagonals of the kite, most found 
the areas of two triangles and summed.  Calculating twice the area of triangle OPT was most 
common, as this made use of the value already found.  Candidates who found the area of the 
segment were often unsure what to do with it.  Other candidates realised it was possible to use this 
successfully by subtracting it from the area of triangle PQT.  When candidates used longer, multi-
step methods, it was sometimes difficult to follow their intended logic.  Calculations appeared 
randomly and sometimes, due to the resulting lack of space, alongside the diagram.  This resulted 
in marks being difficult to award as the candidate’s intention was not clear.  Also, with the extra 
calculations involved, there was often a loss in accuracy in the final answer. 

 
 (iii) The vast majority of candidates found the length of the arc PQ correctly.  Most of these candidates 

were able to apply the correct method of adding this to twice the length of PT.  Full credit depended 
on having found PT correctly in part (i). 

 
Answer:  (i)  19.3  (ii)  79.1  (iii)  57.5 
 
Question 5 
 
(a) A majority of candidates realised the correct response was a permutation of the digits.  A good 

number of these gave clear and precise answers about the order of the digits being important and 
earned the mark.  Some candidates needed to explain their reasoning more clearly. It was not 
sufficient to comment on arrangements without mentioning the need for a specific order.  Stating 
that this was the only number that would work, did not add to the information given in the question.  
Candidates need to be aware that, when explaining something, using some phrases from the 
question may be helpful, but alone, these phrases will not be enough to gain credit.  A few 
candidates chose ‘combination’ but then gave an explanation that matched ‘permutation’, so had 
mixed up the terminology.  Others thought that it was a ‘combination’ as ‘order did not matter’. 

 
(b) A few candidates understood this question well and scored full marks.  There were a good number 

of answers given that gain some credit.  Some candidates needed to improve their understanding 
of when they should be multiplying – when the process involves “and” – and when they should be 
adding – when the process involves “or”. It is a common misconception by candidates that “and” 
always means they should “add”.  Permutations were commonly used in this part of the question.  
Candidates who used them needed to read the question more carefully to gain a better 
understanding of what was required. 

 
 (i) Many candidates understood that they were selecting 4 from 6, 4 from 5, 4 from 7.  The 

interpretation of “4 from 6 or 4 from 5 or 4 from 7” was often not made correctly.  Candidates 
demonstrated this by multiplying their combinations, rather than adding them. 

 
 (ii) Again, many candidates understood which selections needed to be made.  In this part the 

interpretation needed to be of “ 1 from 2 and 1 from 6 and 1 from 5 and 1 from 7”.  Candidates 
often misinterpreted the “and” as “add” rather than correctly multiplying their combinations. 

 
 (iii) Some candidates listed the possible outcomes – this was good practice.  Some of these included 

impossible outcomes for the context such as 0, 0, 0, 3.  A few candidates gave one product only – 
listing outcomes may have avoided this.  Reversing addition/multiplication was again seen in 
solutions offered for this part of the question. 

 
Answer:  (b)(i)  55  (ii)  420 (iii)  70 
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Question 6 
 
This question was generally well answered, with many candidates obtaining most of the marks available.  
There was very little confusion over when to integrate and when to differentiate. 
 
 (i) The majority of candidates made a good start to the question, setting v = 0 and solving the 

quadratic correctly.  The method of solution was mostly omitted, with the correct values simply 
being stated.  Candidates should be encouraged to show their method and check their solutions 
using their calculator, rather than relying on their answers being accurate enough to earn credit.  
Some candidates need to read the question more carefully.  The question asked for the time at 
which the particle first came to rest and some did not choose the first occurrence (at t = 1).  Others 
seemed to assume that time began at 1, rather than 0, and therefore stated that t = 6 was the first 
occurrence.  A small number of candidates misinterpreted the question and either substituted t = 0 
or used calculus. 

 
 (ii) Again, this question was well done by the majority of candidates.  Integration was usually 

attempted and accurately carried out.  Sometimes, candidates omitted to evaluate the constant of 
integration which, given the initial conditions, was zero.  Weaker candidates need to take care with 
their variables as, occasionally, some terms were correctly given in t and others incorrectly in x. 

 
 (iii) All candidates answered this part very well.  Very occasionally, candidates changed the negative 

answer to a positive one without reference to deceleration. 
 

Answer: (i)  1  (ii)  
3 22 14

12
3 2

t t t− +   (iii)  −2 

 
Question 7 
 

(a) Many candidates were able to make a positive start, usually by finding AC


 . A large number of 
these candidates progressed further by finding two relevant vectors and showing that they were 
parallel.  Very few candidates made the key statement that their vectors had a common point.  The 
question required a given result to be shown and candidates who omitted to state this did not fully 

complete the argument.  A common misunderstanding was to assume that showing AC AB BC= +
  

 
would be sufficient. It was also common for candidates to incorrectly rewrite the given vectors as 
column vectors in a and b.  This question proved to be a good discriminator. 

 

(b) (i) The best approach was to find and state PQ


before finding the modulus.  Many candidates 
attempted to do this.  Some candidates added the position vectors given – a simple diagram may 

have helped these candidates correct this error.  Candidates who omitted to state their PQ


 before 
calculating the modulus were penalised if their values were incorrect as method steps that were not 
explicitly stated could not be credited. 

 
 (ii) Many candidates showed that they fully understood what was required to answer the question.  

Some candidates demonstrated that they had not understood the concept of a ‘unit vector’ by 
restating, or even finding again, the vector found in part (i).  Conversely some candidates did not 
find the modulus in part (i), but then found it as part of finding the unit vector correctly in part (ii).  
These candidates needed a better understanding of the notation, the general concepts or the 
connections between them. 

 
 (iii) The required correct method was shown by a good number of candidates. In this part of the 

question in particular, candidates would have perhaps benefitted from drawing a simple diagram.  
Some candidates did this although they were very rarely seen.  Candidates often halved their 
answer to part (i) to find the midpoint.  If they had incorrectly added and found 4i+3j in part (i) this 
resulted in a seemingly correct answer from a wrong method. 

 

Answer:  (b)(i) 125   (ii) 
55

1
(2i + 11j)  (iii) 2i + 1.5j 
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Question 8 
 
In both part (a) and part (b), candidates were usually able to give a correct form for the integral if not always 
the correct coefficient.  As a result most candidates gained marks on all parts.  Candidates were expected to 
show the substitution of limits before evaluating their final answer.  Some candidates simply used their 
calculator to evaluate the integral, without carrying out the required integration.  These candidates did not 
take note of the hence in part (a)(ii) and part (b)(ii).  Candidates who did not show the method of using limits 
were penalised.  This was most notable when a correct evaluation was stated following incorrect integration. 
 
In part (c) candidates who thought about the manipulation needed were usually successful.  The brackets 
needed to be expanded before integrating.  Those who realised this were usually accurate in their expansion 
and in the subsequent integration.  Some candidates omitted the cross terms when squaring and then 
integrated two terms only.  Many candidates would have done better if they had appreciated that the 
integration of such complex functions is not required in this syllabus.  This should have directed them 
towards the simplification to three terms that was required.  Commonly, candidates attempted an invalid 
“chain rule for integration method”.  As the integral was indefinite, it was appropriate to include the constant 
of integration. 
 

Answer:  (a)(i)  4 31
e

4
x c+ +   (ii)  707 000  (b)(i)  3sin

3

x c+   (ii)  0.521  (c)  
1 3

2
1 3

x xx
−

+ +
−

 + c 

 
Question 9 
 
(a) This was a very well done question.  Most candidates correctly identified the critical values and 

sign errors were rarely made.  Some candidates did not state a range of values as their answer. 
Those who did were frequently correct.  Some candidates would have found a sketch helpful, 
although they were rarely drawn.  Some candidates gave their answer as two separate inequalities.  
While some of these candidates correctly connected their inequalities using “and”, many were 
unable to gain full credit as they omitted the word “and” or used “or” or a comma, for example.  
Most candidates used the correct inequality signs and, incorrect, strict inequalities were rarely 
seen. 

 
(b) (i) This part was also generally well done with many correct solutions.  Some candidates omitted to 

subtract 16 when finding b. 
 

 (ii) Candidates were expected to use their previous answer to find the greatest value.  Credit was 
given to those who started again or differentiated.  There were some good, neat answers, using 
part (b)(i), as directed in the question.  Weaker candidates often carried out algebraic manipulation 
which had little to do with what was required.  Many candidates clearly identified which of their two 
values was which.  Other candidates would do well to realise that this was also good practice, as 
some solutions were quite vague.  Stating the coordinates of the maximum point only did not score 
as the candidate had not interpreted the information given by each coordinate. 

 
 (iii) Candidates drew some very good sketches in this part.  Many identified the three points of contact 

with the axes correctly.  Some candidates omitted to indicate where their curve met the y-axis in 
their, otherwise, very good sketches.  Weaker candidates would improve if they paid more attention 
to the overall shape of the curve generated by a quadratic function.  There was a tendency to 
assume that the maximum must lie on the y-axis leading to some distortion of the quadratic shape. 

 

Answer:  (a)  
1

5
4

x− ≤ ≤   (b)(i)  ( )2
4 25x + − (ii)  greatest value 25 at x = –4 

 
Question 10 
 
 (i) This part was generally well done.  Some candidates linked their equations explicitly to y = mx + c 

and this is good practice in questions of this type.  The most common error was to use logs to base 
10 rather than logs to base e.  Candidates needed to read the question more carefully to avoid this 
error as this was clearly stated in both part (i) and part (ii).  Most candidates were able to apply at 
least one of the laws of logarithms. 
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(ii)  While a good many candidates were able to find the intercept and gradient, very few managed to 
gain full credit.  The reasons for this were numerous.  Candidates need to be aware that, when 
finding the gradient and intercept of a line of best fit, they must use points on the line, not the 
original data points.  Using the data points rather than the given line was the most common error.  
Others equated A and b to the intercept and gradient or used logs to base 10.  In finding the 
gradient, the differences were sometimes inverted or inconsistent leading to a positive gradient.  
Candidates needed to read the question carefully as some did not give their, otherwise correct, 
answer to the required accuracy. 

 
 (iii) The best and simplest approach was to read the value for ln y directly from the line in the given 

diagram.  This gave an accurate solution if read and anti-logged correctly.  Some of these 
candidates gave their answer as 9 or ln 9.  Many candidates chose to use their values from part (ii) 
and substituted them into one of the forms of the equation.  While this was a possible method it 
usually lacked accuracy especially as candidates tended to use an already rounded value.  
Candidates would do well to realise that, using values given in the question where possible, rather 
than those they have calculated, should produce more accurate answers. 

 
Answer:  (i)  ln y = ln A + xln b  (ii)  A = 90 000, b = 0.4  (iii)  9ey =  or 8000 to 1 sf 

 
Question 11 
 
Candidates found this question challenging.  If they had identified the regions of the Venn diagram correctly 
and had started to complete it from “the centre outwards”, they would have achieved greater success.  The 
few candidates who followed a logical strategy were successful.  Often, it was not possible to identify a 
candidate’s method.  Many candidates would improve by ordering their method steps and thinking the 
problem through using the diagram to help them.  Often, candidates omitted to use x and y in their method. 
Occasionally, correct answers appeared with no working at all.  Candidates were likely to be successful in 
the first two parts of the question if part (i) was answered correctly with x, 7 – x, and 6 – x being correctly 
marked on the diagram.  Candidates marking the 7 and 6 on the diagram incorrectly usually obtained no 
marks.  Candidates did not always identify the correct area – so they may have had 4 and 9 on the diagram, 
but then gave x and y as different values.  This was more common in part (ii) than in part (i).  The last part of 
the question was not always ‘shown’ as thoroughly as it needed to be.  Some candidates did not use 
numbers in their answer or omitted to state “= 0”. This part was rarely correct if part (ii) was incorrect. The 
exception to this was where the candidate had the correct numbers on the diagram, but had identified y 
incorrectly as a value other than 9. 
 
Answer: (i)  4  (ii)  9 
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ADDITIONAL MATHEMATICS 
 
 

Paper 0606/22 

Paper 22 

 
 
Key Messages 
 
In order to do well in this examination, candidates need to give clear answers to questions, with sufficient 
method being shown that marks can be awarded.  Candidates need to take note of instructions such as “Do 
not use a calculator” or “You must show all your working” in a question.  These instructions mean that 
omitted method will result in a significant loss of marks.  Candidates should ensure that their answers are 
given to no less than the accuracy stated on the paper in order to be credited. 
 
 
General Comments 
 
Many candidates gave clearly presented answers.  Others need to appreciate that poorly presented work is 
often difficult to credit.  If answers are written in alternate locations within their script, candidates should 
indicate where they have written the continuation of their solution.  Some candidates seem to write their 
solution in pencil first and then write over it in pen – this should be avoided.  Some candidates could improve 
by understanding that their working must be detailed enough to show their method clearly, with each key 
step being shown as this can allow method marks to be awarded; it is essential if a question asks candidates 
to “Show that…”.  This indicates that the answer has been given to the candidates and that the marks will be 
awarded for showing how that answer has been found.  The need for this was highlighted in Question 
10(b)(i) and Question 11(i).  Showing clear and full method is also very important if the use of a calculator is 
not allowed, such as in Question 3.  Occasionally it was evident that candidates needed to read the question 
more carefully.  Trial and improvement is not a technique that is assessed in this syllabus and candidates 
who employ this as a method generally are not given full credit for their solution.  When a question has a 
context, such as Question 4, answers should be integer values or decimals rounded as appropriate – 
answers in surd form are not generally acceptable for full credit in questions of this type. 
 
 
Comments on Specific Questions 
 
Question 1 
 
This question proved to be an accessible start to the paper for almost all candidates.  In part (i), some 
candidates could have improved if they had listed the elements of the universal set and deleted them as they 
were placed in the Venn diagram.  It was common for candidates to have omitted the elements 5 and 11.  
Some candidates did not use their Venn diagram to answer part (ii) and part (iii).  These candidates started 
again, working with the separate sets stated in the question.  Whilst this was not wrong, it did waste some 
time.  The majority of answers offered for part (ii) were correct, although some candidates were penalised for 
poor use of notation – such as giving their answer as {3}.  Otherwise, a good start to the paper. 

Answer:  (ii)  3  (iii)  {4, 6} 
 
Question 2 
 
(i)  Many candidates found this question challenging.  The question assessed their ability to form a pair 

of matrices suitable for matrix multiplication in a particular order.  Many candidates reversed the 
order, giving matrices suitable to find the matrix product PQ, rather than QP.  Those candidates 
who wrote down and showed clear consideration of the orders 1 by 2 and 2 by 3 were usually 
successful.  A small number of candidates either summed the number of passengers in each class 
or separated the data out so that they had 4 matrices rather than 2.  Candidates who did this may 
have improved if they had understood that the presentation of data in a matrix does not usually 
involve combining or separating the elements in a category before the matrix is formed. 
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(ii)  Most candidates earned a mark for multiplying their matrices correctly.  A few needed to give more 
attention to their arithmetic. The majority of those who found the correct matrices in part (i) went on 
to multiply them correctly and give their answer in the correct form to earn both marks here.  A 
small number of these presented their figures as a 3 by 1 matrix rather than a 1 by 3 matrix.  These 
candidates may have improved if they had again considered the order of the matrices: 

 
(iii) Although candidates were not asked to evaluate QPR, many did, finding it helpful in understanding 

exactly what information it gave.  Some candidates suggested that QPR gave the total revenue 
from each flight – which is a correct interpretation of QP rather than QPR.  Some candidates 
commented that QPR could not be found.  This should have been an indicator of an error in an 
earlier part.  A good proportion of comments made were clear and accurate enough to be credited. 

 

Answer:  (i)  P = 







345250

587060
 and Q = ( )120 300   (ii)  ( )22, 200 24, 000 17,160  

 
Question 3 

(i)  A high proportion of candidates formed a correct equation, such as 
536

51536

+
+=BC .  A few 

candidates clearly used their calculator and so did not score any marks.  Some candidates 

attempted some spurious cancelling, arriving at an answer of 556 + .  There is a possibility that 
these candidates were confused between the binomial presentation of irrational numbers and 
numbers presented in standard form.  Most candidates indicated that the next step in their method 
was to multiply the numerator and denominator by the square root conjugate of their denominator.  
Some candidates went from this step directly to the final answer and therefore earned no further 
marks as key method steps had been omitted.  Candidates needed to show clear evidence that a 
calculator had not been used.  Multiplying out was very well done and most candidates who 
showed this step in the method also found the correct answer.  A small number of candidates 
formed and solved simultaneous equations and this was generally well done. 

 
(ii)  Most candidates applied Pythagoras’ theorem correctly and a high proportion showed sufficient 

evidence of squaring their values to earn the first mark.  A few candidates made unfortunate 
arithmetic slips.  A very good number of fully correct answers were seen. 

 

Answer:  (i)  521+   (ii)  540102 +  
 
Question 4 
 
(i)  The majority of candidates drew a diagram and many of these candidates scored both marks.  

Those who drew right-angled triangles with the shorter legs labelled 2 and 3 showed that they had 
misinterpreted the question. Indicating which angle had been found was necessary to earn both 
marks.  Some candidates would have improved if they had made this clear, either in their diagram 
or by making a reasonable comment.  Some assumed the position of North and incorrectly 
described the direction as a bearing.  Other candidates gave an angle and no reference axis, some 
simply said “to the other side”.  These candidates would do better should they understand that they 
simply needed to give a clear and unambiguous indication of which angle they were finding. 

 
(ii)  Most candidates attempted to calculate a resultant velocity and divide 80 by that velocity.  A few 

candidates calculated the distance rowed and divided that by 3.  The simplest approach was to 
apply Pythagoras and find the resultant using the figures given in the question – this reduced the 
likelihood of a premature approximation error being made, using trigonometry with their angle from 
part (i).  Candidates should be aware that they are likely to be more accurate in their solutions if 
they use figures given in the question, where possible, rather than ones they have calculated.  
Some candidates simply added or subtracted the two speeds given in the question, showing a lack 

of understanding of their vector triangle.  A resultant velocity of 13  was not uncommon from 
those candidates who had misinterpreted the question in part (i).  Weaker candidates tended to try 
to find the relevant distance or resultant velocity in this part using a mixture of 80 with 2 or 3, not 
taking into account the units given.  Some neat approaches were seen from more able candidates, 
using Pythagoras and a correct right-angled triangle with sides 80, 2t and hypotenuse 3t. 

 
Answer:  (i) 48.2° to the bank  (ii)  35.8 seconds 
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Question 5 
 
This was a standard simultaneous equations question which was answered very well by almost all 
candidates.  Although a few candidates were careless with their initial substitution or expansion of brackets, 
errors were rare and fully correct answers common.  Whilst most solutions were well presented, occasionally 
solutions were poorly presented with scribbled out sections or alterations where candidates had over-written 
figures making it difficult to determine whether the work was actually correct.  Some candidates, having 
found all the correct values, then incorrectly rejected some of them as being incorrect – usually the fractional 
solutions. 
 

Answer:  x = 
3

4
, x = 3, y = 

3

8
, y = 1 

 
Question 6 
 
(a) Well answered, although many answers were given as 1.22, with no greater accuracy seen.  

Candidates who did truncate their answer in this way were penalised and they would have done 
better if they had written down the longer decimal answer first, then rounded.  Almost all candidates 
realised that, generally, when the unknown is an exponent, logarithms need to be taken at some 
point.  Some very good algebraic manipulation was displayed by candidates here, with many 

rearranging the given equation to 96 =x .  Many took logs to base 6 at this point, although some 
candidates incorrectly attempted to convert both sides to powers of 3 in order to compare 

exponents.  Occasionally bracketing errors were made with a first step of 
4
1log6log2 =−x  being 

evaluated as 6log2log
4
1 +=x . 

 
(b) The simplest methods of solution were to either combine all the logarithms or separate them all.  

Combining them was, by far, the most popular method.  Candidates achieved most success using 
this method if they kept their solutions simple, neat and were careful with their cancelling of terms.  

Those separating the logs often made errors when bringing down powers – for example, 22log ya  

became ya 2log2 or yy aa
42log16log =  became ya 2log4 and were less successful.  A good 

number of correct solutions were seen, although some neglected to discard the negative two.  
Some, weak candidates simply “cancelled” the logs and incorrectly formed a quadratic in y from the 
sums and differences of the arguments, which they then solved.  Some seemingly correct answers 
were from wrong working.  Some candidates decided to let a = 2, simplifying the question greatly 
and these were not credited.  A small number of candidates did correctly change the base of each 
logarithm from a to 2; this was unnecessary, resulted in extra work to arrive at the answer and 
often was incomplete or unsuccessful. 

 
Answer:  (a)  1.23  (b)  y = 2 
 
Question 7 
 
A good number of candidates presented neat, well thought out and fully correct solutions which showed 
good understanding of what was required.  Other candidates would have done better if they had paid more 
attention to presentation, as factorials were lost or figures misread in their deletions and amendments. 
 

Most candidates were able to start the question, with many writing their coefficients in terms of 2Cn  and 

4Cn .  Of these candidates, a few did not deal with 21 −n  and 41 −n  and made no progress.  Those who did, 

often correctly arrived at 2 440 16n nC C=  and found the answer by trial and improvement techniques on their 

calculator, rather than showing the full method.  Some candidates made good use of the given Binomial 

Theorem on the formulae page and immediately converted 2Cn  and 4Cn into factorial form. Some slips were 

made when handling the factorials, 4!  becoming 4 was not uncommon, as was )!4( −n  becoming (n – 4), for 

example.  Some candidates simplified 
)!4(

)!2(

−
−

n
n

 correctly showing good understanding of what the notation 

meant.  Other candidates thought that )!2)(3)(4()!4( −−−=− nnnn , showing a clear misunderstanding.  

Candidates who avoided the factorial form, and who seemed to have learned the expansion for nx)1( + , 
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made the simplest immediate progress, writing the coefficients directly in terms of n.  These candidates were 
more likely to omit the powers of 2, however.  Some candidates misplaced the factor of 10 and would have 
benefitted from reading the question more carefully.  Candidates who realised that, as n was positive and 
also needed to be greater than 1 for the expansion to exist, they could safely divide both sides by n and 

1n − arrived at the correct answer much more easily than those who multiplied out and then had to factorise 
a quartic or cubic expression, which often contained an error. 
 
Answer:  8 
 
Question 8 
 
Candidates were instructed to show all their working in this question. and those who omitted to do so were 
not awarded full marks.  This question, assessing the application of integration to evaluate a plane area, was 
well answered.  Most candidates found the area of the trapezium OABC and subtracted the necessary area 
between the curve and the x-axis from it.  Many candidates correctly found the coordinates of A, B and C, 
although occasionally 7 was calculated as 5.  The most popular method of finding the area of the trapezium, 

OABC, was to use 
2

)( BCOAOC +
.  Others integrated the equation of the line from 0 to 7.  Most went on to 

correctly calculate the required area between the curve and the x-axis by integrating.  Some candidates 
omitted to show the substitution of the limits into their integral or integrals and were penalised for omitting a 
key part of the method, as all working needed to be shown in full to gain full marks.  Some candidates 
integrated the difference of the equations.  This more sophisticated approach was often very successful, 
though sign errors were sometimes made in the process.  Occasionally, candidates erroneously mixed 
methods and, after having found the correct answer, went on to subtract it from the trapezium, for example.   
 

Answer:  
6

343
 

 
Question 9 
 
This whole question was well-answered.  Few errors were seen and candidates displayed very good 
understanding of what was required. 
 
(i)(ii) Almost universally correct. 

 
(iii) Again, well-answered.  Candidates either used a gradient calculation with the coordinates of P or 

formed the equation of PR to correctly find the coordinates of R.  Those who chose to find the 
equation of PR sometimes gave their answer as (0, 8). 

 
(iv) Most candidates correctly stated the perpendicular gradient using the value of m they had found in 

part (i).  Some candidates unnecessarily attempted to find the gradient of PQ again, and were not 
always successful in their attempts.  Many candidates omitted to rearrange the equation into the 
form required in the question, with a and c often being quoted as fractions.  These candidates may 
have benefitted from rereading the question once they had completed their solution. 

 

(v)  This was very well answered.  A few candidates calculated 






 −−
2

,
2

QPQP yyxx
. 

 
(vi) The simplest method of solution was to use half base times height, as all the lengths could easily 

be calculated from the coordinates found.  Very few candidates observed this so various methods 
of solution were offered – some of which took considerable time.  Candidates would do well to 
appreciate that the more complex the solution offered, the more opportunity there is for error. 

 

Answer:  (i)  3  (ii)  1  (iii)  (−1, 7)  (iv)  323 =+ yx   (v)  
1 11

,
2 2

 
 
 

  (vi)  4.5 
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Question 10 
 
(a) Some candidates drew neat and accurate sketches, with all key features clear and present and 

were rewarded for their attention to detail.  Other candidates would improve if they paid more 
attention to the key features stated here.  Many candidates realised that the curve drawn needed to 
be all above the x-axis, though some candidates sketched f : x → sin x.  The quality of drawing was 
variable.  Although it was often omitted, many candidates marked 1 on the vertical axis.  These 
candidates then often neglected to take any notice of where they had marked 1 and had maxima 
well above or below their indicated position.  Careful attention was not always paid to the maxima 
being of equal height.  Some candidates drew a turning point at (180, 0) rather than a cusp.  Most 
candidates attempted to draw a curve, although on occasion candidates seemed to have used a 
pair of compasses as their curves were semi-circular. 

 
(b) (i) As this was a question where the answer had been given, all steps relevant to arriving at that 

answer needed to be clearly indicated.  This was not always the case and the question proved to 
be a good discriminator.  Many candidates used the fact that h and g were inverse functions to 
answer this part of the question, starting with )34ln( −= xy  and rearranging to find the inverse.  
These candidates often justified this by stating h = g-1 although this information was sometimes 
omitted. Some candidates justified their solution by stating hgg-1 = h only.  This was insufficient as, 
although this is generally true, candidates needed to provide further evidence to link this statement 
to the question given.  An alternative approach used by many candidates was to form hg and show 
that the result was x.  This was the simplest way to arrive at a complete and correct answer.  

Candidates who started by forming an identity by putting x
x

=+−

4

3e )34ln(

 which they then went on 

to manipulate as if it were an equation, stating results such as 4x – 3 = 4x – 3 would do better if 

they understood that this is not good practice.  Weaker candidates started from 
4

3e +=
x

x  or 

ln(4 3)x x= −  or 
)34ln(g

hg

−
=

x
x

 and made no progress. 

 
 (ii) A good proportion of candidates drew curves in the first quadrant only with the y-intercept 

indicated, as required, and these were sufficiently accurate to gain credit.  Some candidates 
omitted to mark the y-intercept or state its coordinates as required in the question.  These 
candidates may have improved by rereading the question.  Some candidates thought the y-

intercept was 
4

3
 through misevaluating 

4

3e0 +
 rather than using the relationship between the 

graph of a function and its inverse.  Candidates who used a square scale and drew y = x 
approximately at 45° to the x-axis produced the most accurate sketches.  Some candidates drew 
sketches that curved back or that had turning points close to the y-axis.  These candidates may 
have improved if they had considered the functions given earlier in the question – g being 
logarithmic and h being exponential in form. 

 
 (iii) Many candidates stated the domain of g rather than h here.  Some are still seemingly unclear 

about which variable to use in their statements.  Candidates should realise that domains are 
always described using the independent variable, in this case x.  Some candidates needed to be 
more careful with their choice of inequality sign or words, as x > 0 was a common answer. 

 
 (iv) There were more correct answers given to this part of the question.  Candidates should realise that 

ranges are always described using the dependent variable, in this case y or h(x).  Candidates may 
improve in this part and in part (iii) if they are able to link the domain and range of a function to its 
graphical presentation. 

 
Answer:  (iii)  0x ≥   (iv)  1y ≥  
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Question 11 
 
(i)  Many candidates used the simplest approach and formed a proportional relationship using the 

heights of the pyramids and the sides AD and PS.  Some candidates adopted much more complex 
approaches using other proportional relationships, such as the volumes of the two pyramids.  
Whilst this is not incorrect, the extra manipulation required to find an expression for AD in terms of 
h, introduced a greater probability of making an error.  Some candidates found other forms of the 
expression for AD using Pythagoras’ theorem repeatedly.  Weaker candidates tended to state 

84

hAD =  and then were unable to make progress with finding the given expression for the volume.  

Other candidates would have done better if they had realised that, working back from the 
expression given for the volume to find AD and then using that expression to find the volume given, 
was a circular argument that gained no credit.  Candidates who correctly found AD almost 
universally scored all 4 marks in this part.  A small number of candidates omitted to find the 
volume, rereading the question might have helped. 

 
(ii)  A good number of fully correct solutions were presented for this part.  Most candidates were able to 

differentiate the given volume correctly, having realised that differentiation was appropriate.  A few 
slips were seen in handling the fractional coefficient of the h2 term, with some candidates 
multiplying by 4 prior to differentiating.  Many candidates showed good skills in this question, 
equating their derivative to zero and solving successfully.  Most candidates found the correct 

values, though some selected 8 rather than 
3

8
 as giving the maximum volume.  Many candidates 

related their values to the question and stated that 8 was not possible.  This was the simplest way 
to select the correct answer. 

 

Answer:  (i) 
2

8 hAD −=  (ii) 
3

8
 

 
Question 12 
 
(i)(ii) Candidates found both parts straightforward.  Most substituted the appropriate values into the 

given cubic equation/expression and evaluated successfully.  Very few errors were seen.  Those 
who chose to use longer, division methods were generally also successful, though some omitted to 
indicate their answer in part (ii) and some sign errors were made using these methods. 

 
(iii) Only a few candidates observed that the simplest  method of finding p and q was to identify, by 

inspection, the linear factor as (x – 1) and multiply out. Those who solved the problem using this 
method were almost always correct and arrived at the answer very quickly.  Some candidates 
resorted to long division to find the linear factor and this resulted in quite some work.  The resulting 
complexity of the method often led to sign errors being made in the working or in candidates not 
completing the division and not knowing what to do with what they had found.  The most popular 
method of solution was to use two of the roots of the cubic equation and form a pair of 
simultaneous equations to solve.  This needed great care and attention to signs and powers and 
this method often resulted in arithmetic errors.  Weaker candidates correctly substituted −2 and 
equated the expression found to 0 then incorrectly substituted 3 and equated the expression found 
to 600, copying the processes in part (i) and part (ii).  These candidates did not fully consider that 
the remainder when the quartic expression is divided by x − 3 is not the same as when the cubic is 
divided by x − 3 since there is an extra factor to take into account. 

 
Answer:  (ii)  600  (iii)  5,11 == qp  
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ADDITIONAL MATHEMATICS 
 
 

Paper 0606/23 

Paper 23 

 
 
Key Messages 
 
In order to do well in this paper, candidates need to show full and clear methods in order that marks can be 
awarded.  On occasion, drawing or marking information on a diagram is helpful, and candidates should be 
encouraged to do this.  In questions where the answer is given, candidates are required to show that it is 
correct and fully explained solutions with all method steps shown are needed.  In questions that require a 
solution of several steps, clearly structured and logical solutions are more likely to gain credit.  Omitting 
method steps through using a calculator often results in full credit not being given for a solution.  Candidates 
should be encouraged to write down any general formula they are using as this reduces errors and is likely to 
improve the accuracy of their solutions. 
 
 
General Comments 
 
Some candidates produced high quality work displaying wide-ranging mathematical skills, with well-
presented, clearly organised answers.  This meant that solutions were generally clear to follow.  Other 
candidates produced solutions with a lot of unlinked working, often resulting in little or no credit being given. 
 
Questions which required the knowledge of standard methods were done well.  Candidates had the 
opportunity to demonstrate their ability with these methods in many questions.  Most candidates showed 
some knowledge and application of technique.  The majority of candidates attempted most questions, 
demonstrating a full range of abilities. 
 
Some candidates need to improve their reading of questions and keep their working relevant in order to 
improve.  Candidates should also read the question carefully to ensure that, if a question requests the 
answer in a particular form, they give the answers in that form.  When a question demands that a specific 
method is used, candidates must realise that little or no credit will be given for the use of a different method.  
They should also be aware of the need to use the appropriate form of angle measure within a question. 
 
Where an answer was given and a proof was required, candidates needed to fully explain their reasoning.  
Omitting method steps in such questions resulted in a loss of marks.  Candidates should take care with the 
accuracy of their answers.  Centres are advised to remind candidates of the rubric printed on the front page 
of the examination paper, which clearly states the requirements for this paper.  Candidates need to ensure 
that their working values are of a greater accuracy than is required in their final answer. 
 
When asked for a sketch, many candidates plotted and joined coordinates, rather than making a sketch 
showing the key features.  Candidates would improve if they realised that this often resulted in diagrams that 
were of the wrong shape or incomplete.   
 
Comments on Specific Questions 
 
Question 1 
 
(a) Candidates used a variety of methods to answer this part of the question.  The most successful 

approach was to use the change of base rule.  This immediately gave a term in base 3, as 

required.  Alternative methods in other bases, for example x3
3

log  were only given credit when 

converted into the required base.  Candidates would improve by avoiding using these, less direct, 
methods to answer the question.  Methods which involve an increased number of steps increase 
the opportunity for errors to be made.  This was also true of those solutions which began by making 
use of the reciprocal.  On  occasion, the base of the logarithm looked like a multiple. 
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(b) There were some elegant solutions where the required result was obtained in three or four lines.  
Some candidates who knew some of the rules of logarithms were unable to apply them to the 
question.  These candidates would do better if they attempted to apply their laws one at a time, 
rather than attempting to apply many together.  Many would also have made more progress if they 

had recalled that 1 could be written as a
a

log .  Some candidates anti-logged the given equation 

and then gave that as their final answer.  These candidates would have done better if they had 
appreciated that they should continue to simplify their answers where it is clear that further 
simplification can be done, such as in this case. 

 

Answer:  (a)  
3

log3 x   (b)  y = 125a 

 
Question 2 
 
(a) Many candidates gave only one answer and this was usually for the part of the function with a 

negative gradient.  These candidates may have done better if they had extended the lines in the 
diagram and considered them separately.  While there were some correct second equations given, 
it was common for candidates to assume that the line with positive gradient was perpendicular to 
the line they had already found, resulting in lines with gradients of ±0.5.  Candidates also 
sometimes incorrectly gave their answer in the form of modulus functions.  This resulted in the loss 
of a solution as they had, in effect, made their answers the same. 

 
(b) Candidates should know the shape of the graph of an exponential function.  The curve demanded 

was a simple translation of e
x

y
−

= .  Candidates would have done better if they had thought of it in 

this way.  Many candidates attempted to plot points rather than sketch a curve.  This takes time 
and should not be necessary for a question of this type.  Poor choice of ‘scale’ at times led to 
curves approaching the x-axis.  Some candidates concentrated their efforts on the part of the curve 
in the first quadrant with no indication of what was in the second.  Candidates drew a variety of 
graphs, with straight lines, perhaps the most popular.  Many candidates identified the intercept with 
the y-axis as the point (0, 4).  Candidates should be aware that marks are awarded for the correct 
shape and positioning of graphs and that coordinates of intercepts alone, do not gain credit unless 
the graph is attempted also. 

 

Answer: (a)  f(x) = 2x − 4 and f(x) = −2x + 4    
 
Question 3 
 
(a) This question was well done by the majority of candidates.  Occasionally, one or two elements 

were miscalculated.  A few candidates attempted to find a 2 x 2 matrix.  A small number of 
candidates would have improved if they had taken more care with the order of operations required 
or had read the question more carefully. 

 
(b) Candidates were asked to state what was represented by certain matrix products, rather than to 

evaluate them.  This was challenging for many.  Many candidates gave clear and concise 
statements that were easy to credit.  Other candidates misinterpreted what was required, 
sometimes thinking that identifying the order of the resultant matrix was sufficient.  While much 
leniency was given in the use of terms to indicate value, candidates needed to be clear regarding 
whether the matrix they were describing represented the total value of the stock in each shop (as 
in part (b)(i)) or the total value of the stock in all the shops (as in part (b)(ii)).  Simple statements 
are generally the best solutions to such questions, as answers which offered more description often 
became ambiguous or contradictory.  Some candidates found evaluating the matrix product useful.  
Others became confused and related the values to the 4 different types of television rather than 
shops.  It was not uncommon for candidates to reverse the answers to part (b)(i) and part (b)(ii). 

 

Answer:  (a)  






 −

1034

628
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Question 4 
 
 (i) This was generally well attempted.  Many candidates recalled that the angle between radius and 

tangent was a right-angle and used the tangent ratio.  Others found other relevant angles correctly 
and used the sine rule.  Some candidates gave lengthy solutions involving calculating numerous 
interim lengths.  These methods were not always successful as the extra steps needed introduced 
a greater risk of making an error.  A few candidates selected incorrect trigonometric ratios. 

 
 (ii) Most candidates made a good start to this question.  They realised that the area of a sector was 

relevant and applied the formula correctly.  There was no uniform method favoured for calculating 
the required area. “Kite minus sector” was most common, with the area of the kite being found by 
various methods.  Some candidates calculated the lengths of the diagonals of the kite, most found 
the areas of two triangles and summed.  Calculating twice the area of triangle OPT was most 
common, as this made use of the value already found.  Candidates who found the area of the 
segment were often unsure what to do with it.  Other candidates realised it was possible to use this 
successfully by subtracting it from the area of triangle PQT.  When candidates used longer, multi-
step methods, it was sometimes difficult to follow their intended logic.  Calculations appeared 
randomly and sometimes, due to the resulting lack of space, alongside the diagram.  This resulted 
in marks being difficult to award as the candidate’s intention was not clear.  Also, with the extra 
calculations involved, there was often a loss in accuracy in the final answer. 

 
 (iii) The vast majority of candidates found the length of the arc PQ correctly.  Most of these candidates 

were able to apply the correct method of adding this to twice the length of PT.  Full credit depended 
on having found PT correctly in part (i). 

 
Answer:  (i)  19.3  (ii)  79.1  (iii)  57.5 
 
Question 5 
 
(a) A majority of candidates realised the correct response was a permutation of the digits.  A good 

number of these gave clear and precise answers about the order of the digits being important and 
earned the mark.  Some candidates needed to explain their reasoning more clearly. It was not 
sufficient to comment on arrangements without mentioning the need for a specific order.  Stating 
that this was the only number that would work, did not add to the information given in the question.  
Candidates need to be aware that, when explaining something, using some phrases from the 
question may be helpful, but alone, these phrases will not be enough to gain credit.  A few 
candidates chose ‘combination’ but then gave an explanation that matched ‘permutation’, so had 
mixed up the terminology.  Others thought that it was a ‘combination’ as ‘order did not matter’. 

 
(b) A few candidates understood this question well and scored full marks.  There were a good number 

of answers given that gain some credit.  Some candidates needed to improve their understanding 
of when they should be multiplying – when the process involves “and” – and when they should be 
adding – when the process involves “or”. It is a common misconception by candidates that “and” 
always means they should “add”.  Permutations were commonly used in this part of the question.  
Candidates who used them needed to read the question more carefully to gain a better 
understanding of what was required. 

 
 (i) Many candidates understood that they were selecting 4 from 6, 4 from 5, 4 from 7.  The 

interpretation of “4 from 6 or 4 from 5 or 4 from 7” was often not made correctly.  Candidates 
demonstrated this by multiplying their combinations, rather than adding them. 

 
 (ii) Again, many candidates understood which selections needed to be made.  In this part the 

interpretation needed to be of “ 1 from 2 and 1 from 6 and 1 from 5 and 1 from 7”.  Candidates 
often misinterpreted the “and” as “add” rather than correctly multiplying their combinations. 

 

 (iii) Some candidates listed the possible outcomes – this was good practice.  Some of these included 
impossible outcomes for the context such as 0, 0, 0, 3.  A few candidates gave one product only – 
listing outcomes may have avoided this.  Reversing addition/multiplication was again seen in 
solutions offered for this part of the question. 

 
Answer:  (b)(i)  55  (ii)  420 (iii)  70 
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Question 6 
 
This question was generally well answered, with many candidates obtaining most of the marks available.  
There was very little confusion over when to integrate and when to differentiate. 
 
 (i) The majority of candidates made a good start to the question, setting v = 0 and solving the 

quadratic correctly.  The method of solution was mostly omitted, with the correct values simply 
being stated.  Candidates should be encouraged to show their method and check their solutions 
using their calculator, rather than relying on their answers being accurate enough to earn credit.  
Some candidates need to read the question more carefully.  The question asked for the time at 
which the particle first came to rest and some did not choose the first occurrence (at t = 1).  Others 
seemed to assume that time began at 1, rather than 0, and therefore stated that t = 6 was the first 
occurrence.  A small number of candidates misinterpreted the question and either substituted t = 0 
or used calculus. 

 
 (ii) Again, this question was well done by the majority of candidates.  Integration was usually 

attempted and accurately carried out.  Sometimes, candidates omitted to evaluate the constant of 
integration which, given the initial conditions, was zero.  Weaker candidates need to take care with 
their variables as, occasionally, some terms were correctly given in t and others incorrectly in x. 

 

 (iii) All candidates answered this part very well.  Very occasionally, candidates changed the negative 
answer to a positive one without reference to deceleration. 

 

Answer: (i)  1  (ii)  
3 2

2 14
12

3 2

t t
t− +   (iii)  −2 

 
Question 7 
 

(a) Many candidates were able to make a positive start, usually by finding AC
uuur

 . A large number of 

these candidates progressed further by finding two relevant vectors and showing that they were 
parallel.  Very few candidates made the key statement that their vectors had a common point.  The 
question required a given result to be shown and candidates who omitted to state this did not fully 

complete the argument.  A common misunderstanding was to assume that showing AC AB BC= +

uuur uuur uuur

 

would be sufficient. It was also common for candidates to incorrectly rewrite the given vectors as 
column vectors in a and b.  This question proved to be a good discriminator. 

 

(b) (i) The best approach was to find and state PQ
uuur

before finding the modulus.  Many candidates 

attempted to do this.  Some candidates added the position vectors given – a simple diagram may 

have helped these candidates correct this error.  Candidates who omitted to state their PQ
uuur

 before 

calculating the modulus were penalised if their values were incorrect as method steps that were not 
explicitly stated could not be credited. 

 
 (ii) Many candidates showed that they fully understood what was required to answer the question.  

Some candidates demonstrated that they had not understood the concept of a ‘unit vector’ by 
restating, or even finding again, the vector found in part (i).  Conversely some candidates did not 
find the modulus in part (i), but then found it as part of finding the unit vector correctly in part (ii).  
These candidates needed a better understanding of the notation, the general concepts or the 
connections between them. 

 
 (iii) The required correct method was shown by a good number of candidates. In this part of the 

question in particular, candidates would have perhaps benefitted from drawing a simple diagram.  
Some candidates did this although they were very rarely seen.  Candidates often halved their 
answer to part (i) to find the midpoint.  If they had incorrectly added and found 4i+3j in part (i) this 
resulted in a seemingly correct answer from a wrong method. 

 

Answer:  (b)(i) 125   (ii) 
55

1
(2i + 11j)  (iii) 2i + 1.5j 
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Question 8 
 
In both part (a) and part (b), candidates were usually able to give a correct form for the integral if not always 
the correct coefficient.  As a result most candidates gained marks on all parts.  Candidates were expected to 
show the substitution of limits before evaluating their final answer.  Some candidates simply used their 
calculator to evaluate the integral, without carrying out the required integration.  These candidates did not 
take note of the hence in part (a)(ii) and part (b)(ii).  Candidates who did not show the method of using limits 
were penalised.  This was most notable when a correct evaluation was stated following incorrect integration. 
 
In part (c) candidates who thought about the manipulation needed were usually successful.  The brackets 
needed to be expanded before integrating.  Those who realised this were usually accurate in their expansion 
and in the subsequent integration.  Some candidates omitted the cross terms when squaring and then 
integrated two terms only.  Many candidates would have done better if they had appreciated that the 
integration of such complex functions is not required in this syllabus.  This should have directed them 
towards the simplification to three terms that was required.  Commonly, candidates attempted an invalid 
“chain rule for integration method”.  As the integral was indefinite, it was appropriate to include the constant 
of integration. 
 

Answer:  (a)(i)  4 31
e

4

x

c
+

+   (ii)  707 000  (b)(i)  3sin
3

x
c+   (ii)  0.521  (c)  

1 3

2
1 3

x x
x

−

+ +

−

 + c 

 
Question 9 
 
(a) This was a very well done question.  Most candidates correctly identified the critical values and 

sign errors were rarely made.  Some candidates did not state a range of values as their answer. 
Those who did were frequently correct.  Some candidates would have found a sketch helpful, 
although they were rarely drawn.  Some candidates gave their answer as two separate inequalities.  
While some of these candidates correctly connected their inequalities using “and”, many were 
unable to gain full credit as they omitted the word “and” or used “or” or a comma, for example.  
Most candidates used the correct inequality signs and, incorrect, strict inequalities were rarely 
seen. 

 
(b) (i) This part was also generally well done with many correct solutions.  Some candidates omitted to 

subtract 16 when finding b. 
 

 (ii) Candidates were expected to use their previous answer to find the greatest value.  Credit was 
given to those who started again or differentiated.  There were some good, neat answers, using 
part (b)(i), as directed in the question.  Weaker candidates often carried out algebraic manipulation 
which had little to do with what was required.  Many candidates clearly identified which of their two 
values was which.  Other candidates would do well to realise that this was also good practice, as 
some solutions were quite vague.  Stating the coordinates of the maximum point only did not score 
as the candidate had not interpreted the information given by each coordinate. 

 
 (iii) Candidates drew some very good sketches in this part.  Many identified the three points of contact 

with the axes correctly.  Some candidates omitted to indicate where their curve met the y-axis in 
their, otherwise, very good sketches.  Weaker candidates would improve if they paid more attention 
to the overall shape of the curve generated by a quadratic function.  There was a tendency to 
assume that the maximum must lie on the y-axis leading to some distortion of the quadratic shape. 

 

Answer:  (a)  
1

5
4

x− ≤ ≤   (b)(i)  ( )
2

4 25x + − (ii)  greatest value 25 at x = –4 

 
Question 10 
 
 (i) This part was generally well done.  Some candidates linked their equations explicitly to y = mx + c 

and this is good practice in questions of this type.  The most common error was to use logs to base 
10 rather than logs to base e.  Candidates needed to read the question more carefully to avoid this 
error as this was clearly stated in both part (i) and part (ii).  Most candidates were able to apply at 
least one of the laws of logarithms. 
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(ii)  While a good many candidates were able to find the intercept and gradient, very few managed to 
gain full credit.  The reasons for this were numerous.  Candidates need to be aware that, when 
finding the gradient and intercept of a line of best fit, they must use points on the line, not the 
original data points.  Using the data points rather than the given line was the most common error.  
Others equated A and b to the intercept and gradient or used logs to base 10.  In finding the 
gradient, the differences were sometimes inverted or inconsistent leading to a positive gradient.  
Candidates needed to read the question carefully as some did not give their, otherwise correct, 
answer to the required accuracy. 

 

 (iii) The best and simplest approach was to read the value for ln y directly from the line in the given 
diagram.  This gave an accurate solution if read and anti-logged correctly.  Some of these 
candidates gave their answer as 9 or ln 9.  Many candidates chose to use their values from part (ii) 
and substituted them into one of the forms of the equation.  While this was a possible method it 
usually lacked accuracy especially as candidates tended to use an already rounded value.  
Candidates would do well to realise that, using values given in the question where possible, rather 
than those they have calculated, should produce more accurate answers. 

 

Answer:  (i)  ln y = ln A + xln b  (ii)  A = 90 000, b = 0.4  (iii)  9
ey =  or 8000 to 1 sf 

 
Question 11 
 
Candidates found this question challenging.  If they had identified the regions of the Venn diagram correctly 
and had started to complete it from “the centre outwards”, they would have achieved greater success.  The 
few candidates who followed a logical strategy were successful.  Often, it was not possible to identify a 
candidate’s method.  Many candidates would improve by ordering their method steps and thinking the 
problem through using the diagram to help them.  Often, candidates omitted to use x and y in their method. 
Occasionally, correct answers appeared with no working at all.  Candidates were likely to be successful in 
the first two parts of the question if part (i) was answered correctly with x, 7 – x, and 6 – x being correctly 
marked on the diagram.  Candidates marking the 7 and 6 on the diagram incorrectly usually obtained no 
marks.  Candidates did not always identify the correct area – so they may have had 4 and 9 on the diagram, 
but then gave x and y as different values.  This was more common in part (ii) than in part (i).  The last part of 
the question was not always ‘shown’ as thoroughly as it needed to be.  Some candidates did not use 
numbers in their answer or omitted to state “= 0”. This part was rarely correct if part (ii) was incorrect. The 
exception to this was where the candidate had the correct numbers on the diagram, but had identified y 
incorrectly as a value other than 9. 
 
Answer: (i)  4  (ii)  9 
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