CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	23

1	(i) (ii)	f(2)=0 \rightarrow 3(2) ³ +8(2) ² -33(2)+p=0 correct working to $p = 10$ AG method for quadratic factor f(x) = (x-2)(3x ² +14x-5) f(x) = (x-2)(3x-1)(x+5) f(x)=0 \rightarrow x=2, -5, $\frac{1}{3}$	M1 A1 M1 A1 M1	factorise or solve quadratic factor = 0
2	(i)	$^{12}C_{4} = 495$	B1	
	(ii)	$ ^{7}C_{2} \times ^{5}C_{2} = 21 \times 10 $ = 210	M1 A1	
	(iii)	not K and B = ${}^{6}C_{2} \times {}^{4}C_{1} = 15 \times 4 = 60$ K and not B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$ 60 + 36 96	B1 B1 M1 A1	
		OR K and B = ${}^{6}C_{1} \times {}^{4}C_{1} = 6 \times 4 = 24$ not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ $210 - 90 - 24$ 96	B1 B1 M1 A1	
3	(i)	C is (1, 6) D is (1, 6)+(12, 9) = (13, 15)	B1 M1 A1ft	
	(ii)	gradient of $CD = \frac{15-6}{13-1} \left(= \frac{3}{4} \right)$	B1ft	
		gradient of $AB = \frac{10-2}{-2-4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$	B1	
		$\frac{3}{4} \times \frac{-4}{3} = -1$ lines are perpendicular	B1	correct completion www
	(iii)	area = $\frac{1}{2} \times AB \times CD = \frac{1}{2} \times 10 \times 15$	M1	good attempt at two relevant lengths for $\frac{1}{2}$ base × height method
		=75 or array method	A1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	23

4 (i)	$2000 = 1000e^{a+b} \to a+b = \ln 2$	B1	
(ii)	$3297 = 1000e^{2a-b} \rightarrow 2a+b$	M1	substitution of 2, 3297 and
	$= \ln 3.297$ oe	A1	rearrange
(iii)	Solve for one value $a = 0.5$ and $b = 0.193$ or 0.19	M1 A1	
(iv)	$n = 10 P = 1000e^{5.193}$ $= $180000.$	M1 A1	
5 (i)	$\overrightarrow{OX} = \mu(a+b)$	B1	
(ii)	$\overrightarrow{RP} = b - 3a$ or $\overrightarrow{RX} = \lambda(b - 3a)$ oe	В1	
	$\overrightarrow{OX} = 3a + \lambda (b - 3a)$	B1	
(iii)	$\overrightarrow{OX} = \overrightarrow{OX}$ and equate both coefficients		
	$\mu = 3 - 3\lambda$ $\mu = \lambda$	M1	
	$\mu = \lambda = 0.75$	A1	
	$\frac{RX}{XP} = 3 \text{ or } 3:1$	A1ft	$\frac{\lambda}{1-\lambda}$
6 (i)	m=4	B1	
	equation of line is $\frac{\ln y - 39}{3^x - 9} = \frac{39 - 19}{9 - 4}$	M1	forms equation of line
	$ \ln y = 4(3^x) + 3 $	A1ft	ft only on their gradient
(ii)	$x = 0.5 \rightarrow \ln y = 4\sqrt{3} + 3 = 9.928$	M1	correct expression for lny
	y = 20500	A1	
(iii)	Substitutes y and rearrange for 3^x Solve $3^x = 1.150$ x = 0.127	M1 M1 A1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	23

			<u> </u>
7 (i)	$x = \frac{2}{y} + 1 \to y = \frac{2}{x - 1}$	M1	any valid method
	$f^{-1}(x) = \frac{2}{x - 1}$	A1	
(ii)	$\operatorname{gf}(x) = \left(\frac{2}{x} + 1\right)^2 + 2$	B2/1/0	−1 each error
(iii)	$fg(x) = \frac{2}{x^2 + 2} + 1$	B2/1/0	−1 each error
(iv)	ff $(x) = \frac{2}{\frac{2}{x} + 1} + 1 = \frac{2x}{x + 2} + 1$	M1	correct starting expression
	$=\frac{3x+2}{x+2}$	A1	correct algebra to given answer
	$\frac{3x+2}{x+2} = x \rightarrow x^2 - x - 2 = 0$	M1	form and solve 3 term quadratic
	(x-2)(x+1) = 0 x = 2 only	A1	
8 (i)	$v = C + K\sin 2t \qquad C \neq 0$	M1	
	$v = 5 + 6\sin 2t$ $a = 12\cos 2t$	A1 A1ft	
400			
(ii)	$a = 0 \rightarrow \cos 2t = 0$ and solve	M1	set $a = 0$ and solve for t
	$t = \frac{\pi}{4}$ or 0.785 or 0.79	A1	
	$v = 5 + 6\sin\frac{\pi}{2} = 11$	A1ft	ft only on K
(iii)	$v = 2 \rightarrow \sin 2t = -\frac{1}{2}$ and solve	M1	set $v = 2$ and solve for t
	$t = \frac{7\pi}{12}$ or $1.83 - 1.84$	A1	
	$a = 12\cos\frac{7\pi}{6} = -6\sqrt{3}$ or -10.4	A1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	23

9 (i)	i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - \frac{1}{(x-2)^2}$	B1	
		$\frac{dy}{dx} = 0 \rightarrow (x-2)^2 = \frac{1}{4}$	M1	solve 3 term quadratic from
		$(4x^2 - 16x + 15 = 0)$		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		x = 2.5 or 1.5 y = 12 or 4	A1 A1	x values or 1 pair y values or 1 pair
		$\frac{d^2y}{dx^2} = 2(x-2)^{-3}$	M1	use $\frac{d^2y}{dx^2}$ with solution from
		dx^2		$\frac{\mathrm{d}x^2}{\mathrm{d}x} = 0$
		$x = 2.5 \rightarrow \frac{d^2y}{dx^2} > 0 \rightarrow \text{minimum}$		$\frac{1}{dx} = 0$
		$\frac{dx^2}{dx^2}$ $x = 1.5 \rightarrow \frac{d^2y}{dx^2} < 0 \rightarrow \text{maximum}$	A1	both identified www
		$x = 1.5 \rightarrow \frac{1}{dx^2} < 0 \rightarrow \text{maximum}$		
(ii)	i)	$x=3 \rightarrow \frac{dy}{dx}=3$	B1	
		Use $m_1m_2 = -1$ for gradient normal from gradient tangent	M1	must use numerical values
		Eqn of normal: $\frac{y-13}{x-3} = -\frac{1}{3}$	A1ft	
		x-3 Intersection of norm and curve		
		$14 - \frac{x}{3} = 4x + \frac{1}{x - 2}$	M1	equation and attempt to simplify
		$13x^2 - 68x + 87 = 0$	DM1	attempt to solve 3 term quadratic
		$x = \frac{29}{13}$ or 2.23	A1	
10 (i)	i)	LHS = $\frac{1 + \cos x + 1 - \cos x}{(1 - \cos x)(1 + \cos x)}$	B1	correct fraction
		$=\frac{2}{1-\cos^2 x}$	B1	correct evaluation
		$= \frac{2}{\sin^2 x} = \text{RHS}$	B1	use of $1-\cos^2 x = \sin^2 x$ and
		SIII X		completion of fully correct proof
(ii)	i)	$2\csc^2 x = 8$	M1	identity used
		$\sin^2 x = \frac{1}{4}$	A1	
		$\sin x = \pm \frac{1}{2}$	A1	
		$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1	