CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

1	(x+6)(x-1)	M1	Attempt to solve a three term
	Critical values –6 and 1	A1	quadratic
	-6 < x < 1	A1 [3]	Allow $x > -6$ AND $x < 1$ but not OR or a comma. Mark final answer.
2	$(4\sqrt{5}-2)^2 = 80-16\sqrt{5}+4$	M1	Attempt to expand, allow one error,
	Multiply top and bottom by $\sqrt{5+1}$	M1	must be in the form $a + b\sqrt{5}$. Must be attempt to expand top and bottom.
	$17\sqrt{5+1}$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$
	OR $(4\sqrt{5} - 2)^2 = 80 - 16\sqrt{5 + 4}$ $(\sqrt{5} - 1)(p\sqrt{5} + q) = 5p - q + \sqrt{5(q - p)}$	M1 M1	
	Leading to $5p-q=84$, $q-p=-16$ p=17 $q=1$	A1 A1	Must get to a pair of simultaneous equations for this mark
3 (i)	$\frac{\mathrm{d}y}{\mathrm{d}k} = k \left(\frac{1}{4}x - 5\right)^7$	M1	
	<i>k</i> = 2	A1 [2]	
(ii)	Use $\partial y = \frac{dy}{dx} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$^{\uparrow}$ on k needs both M marks
	-256 <i>p</i>	A1 [∱] [2]	♦ only for –128kp and must be evaluated
4 (i)	10	B1	
(ii)	-5	[1] B1	Not $\log_p 1 - 5$
(iii)	$\log_p XY = \log_p X + \log_p Y = 7$	[1] B 1	Or $\log_{XY} p = \frac{1}{\log_p XY}$
			Do not allow just $\log_p X + \log_p Y = 7$
	$\frac{1}{7}$	B1√^ [2]	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

5		x-4y=5 oe	B1	
3				
		2x + 2y = 5 oe	B1	
		Solve their linear simultaneous equations	M1	Each in two variables and not quadratic as far as $x = \dots$ or $y = \dots$
		x = 3 or $y = -0.5$	A1,A1√ [5]	
		OR from log $0.602x - 2.408y = 3.01$ $0.954x + 0.954y = 2.386$ OR from ln $1.386x - 5.545y = 6.931$	B1 B1	
		2.197x + 2.197y = 5.493 Final M1A1A1 follows as before	B1	
6	(a) (i)	-8 or 20	B1	± 40 implies $\pm 2 \times 20$ or ± 160 hence B1
		$-160(x^3)$ isw	B1 [2]	OK if seen in expansion
	(ii)	$60(x^2)$	B1	Can be implied
		(i) $+\frac{1}{2}$ (their 60)	M1	
		$-130(x^3)$	A1 [3]	
	(b)	$16x^2 + 32x + 24 + \frac{8}{x} + \frac{1}{x^2}$ oe	B3,2,1,0	Terms must be evaluated (allow $24x^0$) B2 for 4 terms correct. B1 for 2 or 3 terms correct. ISW once expansion is seen.
7	(i)	$l = \frac{3500}{x^2}$	B1	allow $lx^2 = 3500$
		$L = 3 \times 4x + 2x + 2l$	B1	RHS 3 terms e.g. $12x + 2x + 2\left(\frac{3500}{x^2}\right)$
				or better
		Substitute for <i>l</i> and correctly reach		
		$L = 14x + \frac{7000}{x^2}$	DB1ag [3]	Dependent on both previous B marks
	(ii)	$\frac{\mathrm{d}L}{\mathrm{d}x} = 14 - \frac{14000}{x^3}$	M1A1	M1 either power reduced by one A1 both terms correct
		Equate $\frac{dL}{dr}$ to 0 and solve	DM1	Must get $x^n =$
		dx $x = 10$ $L = 210$	A1	Both values
		$\frac{d^2y}{dx^2} = \frac{42000}{x^4}$ and minimum stated	B1 [5]	Or use of gradient either side of turning point.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

8	(i)	x^2	B1 [1]	Implied by axes or values in a table. May be seen in (ii)
	(ii)	Plot $\frac{y}{x}$ against x^2 with linear scales		Must be linear scales
		x^2 4 16 36 64	B1	At least 3 correct points plotted and
		$\frac{y}{x}$ 4.8 9.6 17.5 29	B1 [2]	no incorrect points Line must be ruled and through at least 2 correct points
	(iii)	Finds gradient (0.4) $a = 0.4 \pm 0.02$	M1	Condone use of correct values from
		$a = 0.4 \pm 0.02$ $b = 3.2 \pm 0.4$	A1 B1 [3]	table/graph to find gradient and /or equation. Values read from graph must be correct.
	(iv)	Read $\frac{y}{x} = 12.5$	M1	Obtaining (x^2) = 22 to 24 from graph
		or substitute in formula		As far as $x^2 = +$ ve constant
		4.8	A1 [2]	4.7 to 4.9 ignore –4.8 or 0
9		Method A	M1	
		Takes components $12v \sin \alpha = 40$	A1 A1	
		$12(v\cos\alpha+1.8)=70$	M1A1	
		$12v\cos\alpha = 48.4$	DM1	
		Solve for v or α $\alpha = 39.6$	A1 A1	Allow 0.691 radians
		$\alpha = 59.0$ $v = 5.23$	[8]	Allow 0.091 radians
	•••••	Method B		***************************************
		$ \begin{array}{c} D \\ 40 \end{array} $		
		$x = 1.8 \times 12 = 21.6$	B1	
		y = 70 - 21.6 = 48.4 $D^2 = 40^2 + 48.4^2 (= 3942.56)$	B1 M1	
		D = 40.4 (-3942.30) $D = 62.8$	A1	
		$V = \frac{D}{12}$	DM1	
		V = 5.23	A1	5.23 or better
		$\tan \alpha = \frac{40}{48.4}$	M1	
		$\alpha = 39.6^{\circ}$	A1 [8]	Allow 0.691 radians

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

Method C		
P B		
V 40		
1.8		
$z = \sqrt{40^2 + 70^2} \left(= 80.6 \right)$	B 1	
, , ,	D1	
$v = \frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$	B 1	
$\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74)$ oe	B 1	Or $\tan(90-\delta) = \frac{7}{4}$
$V^2 = 1.8^2 + 6.72^2 - 2 \times 1.8 \times 6.72 \cos 29.74$	M1	·
V = 5.23	A1	
$\frac{\sin \beta}{1}.8 = \frac{\sin 29.74}{5}.23$	M1	
$\beta = 9.8(3) \text{ or } 9.8(2)$	A1	Allow 0.172 radians
$\alpha = 29.74 + \beta = 39.6$	A1	Allow 0.691 radians
	[8]	
Method D		
B		
40		
δ		
21.6	B 1	
	B1	
$z = \sqrt{40^2 + 70^2} (= 80.6)$ $x = 1.8 \times 12 = 21.6$	B 1	
$\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74)$ oe	M1 A1	This method has extra steps so note at
$D^2 = 21.6^2 + 80.6^2 - 2.21.6.80.6\cos 29.74$		this point the M mark is for an
V = (62.8/12) = 5.23		equation in D but the A mark is for a value of V .
	N#4	, and 01 / .
ain 0 ain 20.74	M1	
$\frac{\sin \beta}{21}.6 = \frac{\sin 29.74}{62}.8$		
$\beta = 9.8(3)$ or $9.8(2)$	A 1	Allow 0.172 radians
$\beta = 9.8(3)$ or $9.8(2)$ $\alpha = 29.74 + \beta = 39.6$	A1 A1	Allow 0.691 radians
ω 25.711 p = 35.0	[8]	Table of the state

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

				T
10	(i)	$AB^2 = 12^2 + 12^2 - 2 \times 12 \times 12 \times \cos 1.4$	M1	$AB = 2 \times 12 \sin 0.7$ More had invalid
		15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$	A1 B1	May be implied May be implied
		Use $s = r\theta (= 58.6)$	M1	12×4.9 or better oe
		74.1	A1	
			[5]	
	(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or	M1	May be implied.
		$\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$		
		(Triangle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1	
		Area of major sector + Area of triangle	M 1	May be implied
		422 or 423	A1	
			[4]	
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}e^{\frac{1}{3}x}$	B1	
		$m = \frac{1}{3}e^3$	M1	For insertion of $x = 9$ into
		3		their $\frac{dy}{dx}$. 6.7 or better if correct.
		$y - e^3 = \frac{1}{3}e^3(x-9)$	DM1	Using their evaluated <i>m</i> to find eqn
		3 (11 3)	21/11	y = 6.7x - 40.2 or better if correct.
		At $Q y = 0, x = 6$	A1	Accept value that rounds to 6.0 to 2sf
		2, ,	[4]	•
	(;;)	Area triangle 1.503 or 20.1		
	(ii)	Area triangle 1.5e ³ or 30.1	B 1	
		$\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x}$ oe	B 1	
		Uses limits of 0 and 9 in integrated function.	M1	± must see both values inserted if
		2-3 2 57 2		incorrect answer
		3e ³ – 3 or 57.3 Area under curve subtract area of triangle	A1	
		1.5e ³ – 3 or 27.1	M1	
		1.30 - 301 27.1	A1	Condone 27.2 if obtained from 57.3 – 30.1.
			[6]	37.3 – 30.1.

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

12	(a)	$\csc x = \frac{1}{\sin x} \text{ inserted into equation}$ $\tan x = -\frac{2}{\pi}$	B1 DB1	
		164.1 344.1	B1 B1√	One correct value. on $180 + (164.1)$ Must come from $\tan x =$ Condone 164 and 344 Deduct 1 mark for extras in range
	(b)	(2y-1) = 0.79or 2.34 Find y using radians 0.898 (or 0.9 or 0.90) 1.67, 4.04 and $4.81(45)$	B1 M1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45.6° Add 1 then divide by 2 on a correct angle One correct value Another correct value Final two values Deduct 1 mark for extras in range