MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3		Mark Scheme GCE O LEVEL – October/November 2013		Syllabus	Paper	
	GCE O LEVEL – October			r/Novembe	r 2013	0606	13
1	(i) ${}^{6}C_{2} (2^{4}) (px)^{2} \text{ or } \binom{6}{2} 2^{4} (px)^{2}$ $240 p^{2} = 60$ $p = \frac{1}{2}$			B1 M1 A1 [3]	Seen or implied, unsimplified M1 for their coefficient of $x^2 = 60$ and attem to solve		
	(ii) co	oefficien	ts of the terms needed	M1	M1 for rea	alising that 2 terms	are involved
	(-	$(-1)^{6}C_{1}(2)^{5}p + (3 \times 60)$		B1	B1 for $(-1)^{6}C_{1}(2)^{5} p$ or $-192p$, using their p		
	=	- 84		A1 [3]			
2	lg	$g \frac{y^2}{5y+60}$	$\frac{1}{2} = 1g10$	B1 B1		$g y = lg y^{2}$ = lg10 or equivalent	, allow when seen
	Or lg	$g y^2 = lg1$	0 (5 <i>y</i> + 60)	M1		$e \text{ of } \log A - \log B = 1$ $\log B = \log AB$	log <i>A/B</i>
	le	0	600 = 0 y = -10, 60 y = 60	DM1 A1 [5]	and an att	Forming a 3 term qu empt to solve = 60 only	adratic equation

Page 4	Mark Sch	eme		Syllabus	Paper
	GCE O LEVEL – Octobe	r 2013	0606	13	
			1		
3 $\tan^2\theta - \sin^2\theta$		Marks are awarded only if they can lead to a complete proof for the methods other than those shown below			
	$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for de	ealing with tan and	a fraction
	$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$	M1	M1 for fa	actorising	
	$=\frac{\sin^4\theta}{\cos^2\theta}$	M1	M1 for us	se of identity $\cos^2 \theta$	$\theta + \sin^2 \theta = 1$
	A1 [4]	A1 for all correct			
Alt solution 1					
Using $\tan^2 \theta = \sin^2 \theta$	$\theta \sec^2 \theta$				
LHS = $\sin^2 \theta \sin^2 $	$\sec^2 \theta - 1$)	M1 M1 M1	M1 use of $\tan^2 x = \sin^2 x \sec^2 x$ M1 for factorising M1 for use of identity		
$=\sin^4 \theta$	$\sec^2 \theta$	A1	A1 for all correct		
Alt solution 2					
RHS = $\sin^4 \theta s$	$ec^2 \theta$				
$=\frac{\sin^2\theta}{\cos^2}$	$\frac{\sin^2\theta}{2\theta}$	M1	M1 for splitting $\sin^4 \theta$ and use of identity		se of identity
$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$		M1	M1 for multiplication		
$=\frac{\sin^2\theta}{\theta}$	M1	M1 for w	riting as two terms	and cancelling	
$= \frac{\sin^2 \theta}{\cos^2 \theta}$ $= \tan^2 \theta - \frac{1}{2}$	A1	A1 for al	l correct		

Page 5			Syllabus	Paper		
	GCE O LEVEL – Octobe	r/Novembe	er 2013 0606 13			
4 (i) $\frac{dy}{dx} = \frac{(x+x)^2}{(x+x)^2}$	$\frac{(3)^2 2e^{2x} - e^{2x}2(x+3)}{(x+3)^4}$	M1	M1 for attempt at quotient rule			
		A2, 1, 0	-1 for eac	h error		
$=\frac{2e^2}{(x)}$	$(x+2)^{(x+2)}$, $A=2$	A1		Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$		
Alt solution		[4]				
$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2\mathrm{x}} \left(-2\right)$	$(x+3)^{-3} + 2e^{2x}(x+3)^{-2}$	M1	M1 for att	tempt at product ru	le	
2 (A2,1,0	-1 for eac	h error		
$=\frac{2e^{2x}(x+1)}{(x+3)}$	$(\frac{2}{3}), A = 2$	A1	Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$			
(ii) $x = -2, y$	$= e^{-4}$	B1, B1 [2]	Accept 1/	e ⁴		
5 (i) $f^{2}(x) = f$	$(2x^3)$					
= ;	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)^3\right)^3$	M1	M1 for =	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)\right)$	3)3	
=	2 ⁻⁵	A1	For 2 ⁻⁵ onl	У		
		[2]				
Alt method						
$f\left(\frac{1}{2}\right) = \frac{1}{4}$	$f\left(\frac{1}{4}\right) = 2^{-5}$	M1	M1 for f o	of their f $\left(\frac{1}{2}\right)$		
		A1	For 2 ⁻⁵ onl			
(ii) $f'(x) = g$ $6x^2 = 4 - 1$	' (x) 10x	B1 B1	B1 for 6x ² B1 for 4 -			
Leading	to $(3x-1)(x+2) = 0$	M1		lution of quadratic	equation obtained	
$x = \frac{1}{3}, -2$	2	A1 [4]	from diffe A1 for bo	erentiation of both th		

	Page 6	M	ark Scheme		Syllabus	Paper
	-	GCE O LEVEL -	- October/Novembe	er 2013	0606	13
			I			
6	Area under the	e curve:				
	$\int_{0}^{\sqrt{2}} 4 - x^2 \mathrm{d}x = \left[\right]$	M1 A1	M1 for at	tempt to integrate		
	=	$=\left(4\sqrt{2}-\frac{2\sqrt{2}}{3}\right)-(0)$	DM1	DM1 for	application of limits	
	=	$=\frac{10\sqrt{2}}{3}$				
	Area of trapez	ium =				
	$\frac{1}{2}(4+2)(\sqrt{2}) =$ Shaded area =	$=3\sqrt{2}$	B1	B1 for are	ea of trapezium, allo	w unsimplified
	Shaded area =	$\frac{10\sqrt{2}}{3} - 3\sqrt{2}$	M1	M1 for su	btraction of the two	areas
	Shaded area =	$\frac{\sqrt{2}}{3}$	A1 [6]	Must be i	n this form	
	Or : Equation of ch	ord:				
	$y = 4 - \sqrt{2x}$		B1	B1 for the	e equation of the cho	ord unsimplified
	Shaded area =	$\int_{0}^{\sqrt{2}} 4 - x^2 - 4 + \sqrt{2}x \mathrm{d}x$	M1 M1	M1 for su M1 for at	btraction tempt to integrate	
	$\left[\frac{\sqrt{2}}{2}x^2 - \frac{x^3}{3}\right]$	$\int_{0}^{\sqrt{2}} = \frac{\sqrt{2}}{3}$	$\sqrt{A1}$	√A1for [$-m\frac{x^2}{2}-\frac{x^3}{3}$] or equi	ivalent, where
		v	DM1 A1 [6]		radient of their chor application of limits	

	Page 7		Mark Scheme			Syllabus	Paper	
			GCE O LEVEL – Octobe	r/Novem	ber 2013	0606	13	
7	(i)	$2t^2 - 2(t^2)$	-t+1)	B1	Correct de	eterminant seen ur	nsimplified	
		Leading t	$t, t = \frac{3}{2}$	M1 A1 [3]		mplification and so lution of det A=1c	olution only, not 1/det A =1	
	(ii)	$\mathbf{A} = \begin{pmatrix} 6\\7 \end{pmatrix}$	$\binom{2}{3}, \mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{4}$,	B1 for matrix		
		$\begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	B1	B1 for de	aling correctly wit	th the factor of 2	
		$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{4} \begin{pmatrix} x \\ x \end{pmatrix}$	$\begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	M1	M1 for pr	e-multiplying thei	$r \begin{pmatrix} 10\\ 11 \end{pmatrix}$ by their	
					\mathbf{A}^{-1} to obt	ain a column mat	ı matrix	
		$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ - 1 \end{pmatrix}$), leading to $x = 2, y = -1$	A1 [5]	Allow $\begin{pmatrix} x \\ y \end{pmatrix}$	$\binom{2}{-1} \text{ for A1}$		
8	(i)	$\frac{1}{2}(4^2)$ sin	$\theta = 7.5$	M1	M1 for at and equat	-	rea of the triangle	
		$\sin\theta = \frac{15}{16}$	$\theta = 1.215$	A1 [2]		lution to obtain the nust include 1.215	-	
	(ii)	$\sin\frac{\theta}{2} = \frac{1}{2}$	$\frac{CD}{4}$, (CD = 4.567)	M1	M1 for at	tempt to find CD		
		Arc lengt	h = 6(1.215)	B1	B1 for arc	e length		
		Perimeter	= 2 + 2 + 6(1.215) + their <i>CD</i>	M1	M1 for su	m of 4 appropriate	e lengths	
			= awrt 15.9	A1 [4]				
	(iii)	Area = $\frac{1}{2}$	$6^{2}(1.215) - 7.5$	B1 M1	B1 for sec M1 for su	ctor area btraction of the 2	areas	
		= 14	.4 (awrt)	A1 [3]				

Page 8	Mark Scheme			Syllabus	Paper		
GCE O LEVEL – October/Novemb			r 2013	0606	13		
6 co (3 co	(a) (i) $6(1-\cos^2 x) = 5 + \cos x$ $6\cos^2 x + \cos x - 1 = 0$ $(3\cos x - 1)(2\cos x + 1) = 0$ $x = 70.5^\circ$ $x = 120^\circ$			M1 for use of $\sin^2 x = (1 - \cos^2 x)$ correct M1 for solution of a 3 term quadratic and attempt at solution of a trig equation A1 for each correct solution			
(ii) cos :		A1, A1 [4]					
	$v = \frac{1}{3}$ only so	DM1		elating $\cos x$ and si	n y or other		
ų	v = 19.5°, 160.5°	√A1, √A1 [3]	correct method of solution				
(b) cot <i>z</i> (4 c	ot z - 3) = 0	M1	M1 for atte	empt to use a factor			
$\cot z=0,$	$z = \frac{\pi}{2}$	B1	B1 for $\frac{\pi}{2}$	(1.57)			
$\cot z = \frac{3}{4}$	$z, \tan z = \frac{4}{3}$ so $z = 0.927$	M1 A1 [4]	M1 dealin	g with cot and atter	npt at solution		
10 (i) lg <i>s</i>		B1 [1]	Allow in t	able or on graph if	no contradiction		
(ii)			<u>No marks</u> <u>ln<i>t</i> against</u>	for graph unless lga lns)	<u>against lgs (or</u>		
lgs lgt	0.3 0.6 0.78 0.9 1.4 0.8 0.44 0.19	M1 DM1 A1 [3]	DM1 for a A1 all poin	or more points correct line through 3 or 4 hts correct with a st at least from first p	correct points raight line		
(iii) <u>No marks</u> graph is u	s in this part unless lgt v lgs						
	$: n = -2 \text{ (allow } -2.1 \rightarrow -1.9)$	M1A1	M1 calcula A1 for $n =$	ates gradient -2			
Intercept $k = 100$: log k, or other method (allow $90 \rightarrow 120$)	M1, A1 [4]		e of intercept and de correctly (can use a	•		
Alt method Using simultaneou lie on the plotted li	s equations, points used must ne.	M2 A1, A1	Must atten $k = 100$ an	npt to solve 2 valid d $n = -2$	equations.		
	(allow $4.8 \rightarrow 5.2$)	M1 A1 [2]		id method using eit sing $lgt = nlgs + lgs$ their k			

Page 9	Mark Scl	Mark Scheme			Paper
	GCE O LEVEL – Octob	per/Novembe	r 2013	0606	13
11 (i) $\left[e^{2x} + \frac{1}{2}\right]$	1 (i) $\left[e^{2x} + \frac{5}{4}e^{-2x}\right]_0^k$			ch term integrated c ied	orrectly, allow
$\left(e^{2k}+\frac{1}{2}\right)$	$\left(\frac{5}{4}e^{-2k}\right) - \left(1 + \frac{5}{4}\right) = 3$	M1		pplication of limits t $4e^{2x} \pm Be^{-2x}$	o an integral of
$e^{2k} + \frac{5}{4}$	$e^{-2k} - \frac{12}{4} = 0$	M1	to obtain a	puating to $\frac{3}{4}$ and att a 3 term equation. Notice the form $Ae^{2x} \pm Be^{2x}$	Aust be using an
$4e^{4k} - 1$	$2e^{2k} + 5 = 0$	A1 [5]	Answer g	iven, so must be co	nvinced
(ii) $4y^2 - 12$	2y + 5 = 0	M1	M1 for so	lution of quadratic	equation
	to $e^{2k} = \frac{5}{2}$, $e^{2k} = \frac{1}{2}$	M1	exponenti		olving
<i>k</i> = 0.45	8, -0.347	A1, A1 [4]	A1 for ea	ch	