MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	e 4 Mark Scheme			Syllabus	Paper	
		IGCSE – May/June 2013	0606	23		
			•			
1	2	$\frac{+2\sin^2\theta}{\cos^2\theta}$	B1	For all methods	look for:	
		2 2 0		- correct simplifi - correct use of	Pythagoras	
	c	$\frac{1}{\cos^2 \theta} = 2 \sec \theta$	B1	$-$ use of tan $=$ $\frac{s_1}{c_0}$	$\frac{n}{2}$	
		$\frac{\ln^2 \theta}{\cos^2 \theta} = 2 \tan^2 \theta$	B1	$-$ use of $\frac{1}{\cos} = s$	ec	
	2	$\sec^2 \theta = 2 + 2 \tan^2 \theta$ and completion	B1	Award first 3 then last B1 for final expression from fully correct method.		
				Inconsistent no a -1 (can recover)	ingle used then	
				If start from RH similarly.	S award	
	0	r				
	(s	$ec \theta + tan \theta)^2 + (sec \theta - tan \theta)^2$	[B 1, B 1			
	2	$\sec^2 \theta + 2\tan^2 \theta$	B1			
	2	$(1 + \tan^2 \theta) + 2 \tan^2 \theta$ and completion	B1]			
	0	\mathbf{r}				
	<u>_</u>	$\frac{+2\sin\theta}{\cos^2\theta}$	[B 1			
	2	$\frac{\left(\sin^2\theta + \cos^2\theta\right) + 2\sin^2\theta}{\cos^2\theta}$	B1			
	$\frac{4}{c}$	$\frac{\sin^2\theta}{\cos^2\theta} = 4\tan^2\theta$	B1			
	$\frac{2}{3}$	$\frac{\cos^2 \theta}{\cos^2 \theta} = 2$ and completion	B 1]			
2 (i)	3.	2	B 1			
(ii)	15		B1			
(iii)	us	es area to find distance	M1	If split 2 or 3 con and must be atte area	rrect formulae mpting total	
	tw	ro of 40, 240 and 32	A1			
	31	2	A1	or A2 for 312 fro	om trapezium	

Page 5	Mark Scheme	Syllabus	Paper	
	IGCSE – May/June 2013		0606	23
			1	
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \sin x \cos x$	M1		
	k = -8	A1		
	Attempt to find <i>x</i> when $y = 8$	M1	Must get to $x =$ numerical value	
	$x = \frac{\pi}{4} (0.785)$	A1	$45^\circ = \mathbf{A0}$ (but ca 2 marks)	n still gain next
	Uses $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	M1	Must use numer and 0.2 for $\frac{dx}{dt}$	ical value for <i>x</i>
	-0.8 (not rounded)	A1	(condone poor n correct terms mu	otation if Iltiplied)
4 (i)	Idea of modulus correct	B1	Two straight lines above and touching <i>x</i> -axis	
	$\frac{1}{2}$ indicated on <i>x</i> -axis	B1	Must be a sketch	1
	2 indicated on y-axis	B1	Must be a sketch	
(ii)	$\frac{2}{3}$ (0.667)	B1	0.67 is B0	
	Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1	As far as $x = numerical numerical distribution of the second se$	nerical value
	$\frac{2}{5}$	A1	SC: If drawn then B1 , B2 for exact answers only	
5 (i)	$(QR = PS =)\frac{96 - 3x}{2}$	B1	Can be implied l statement	by next
	Area = $\left(\frac{96-3x}{2}\right) \times x$	B1	AG	
(ii)	$\frac{dA}{dx} = \frac{96-6x}{2}$ or $48 - 3x$ o.e.	B1		
	Solving $\frac{dA}{dx} = \frac{96 - 6x}{2} = 0$	M1	As far as $x =$ numerical value	
	<i>x</i> = 16			
	A = 384 and state maximum	A1		

Page 6		Mark Scheme			Syllabus	Paper
	IGCSE – May/June 2013				0606	23
_						
6	A	pplies quotient rule correctly	M1		or product rule	
	<u>()</u>	$\frac{(x-2)2x-(x^2+8)}{(x-2)^2}$	A1		$2x(x-2)^{-1}-($	$(x^{2}+8)(x-2)^{-2}$
	<i>y</i> =	= 12	B1			
	U	ses $m_1m_2 = -1$	M1			
	(0	bradient normal $=$ $\frac{1}{2}$)				
	U	ses equation of line for normal	M1		If uses $y = mx$ for M1	+ c must find c
	у	$-12 = \frac{1}{2}(x-4)$ or $y = \frac{1}{2}x+10$	A1			
7 (i)	64	$x + 192x + 240x^2 + 160x^3$ mark final answer	B3, 2, 0	1,	3 terms correc 2 terms correc Can be earned SC2 correct bu	t earn B2 ; t earn B1 in (ii); at unsimplified
(ii)	М	ultiply out $(1 + 3x)(1 - x)$	M1			
	1 ·	$+2x-3x^2$ o.e.	A1			
	(1	$) \times (160) + (2) \times (240) + (-3) \times (192)$ o.e.	M1		3 terms	
	64	L	A1			
	O: M	r ultiply out $(1 - x) (64 + 192x + 240x^2 + 160x^3)$	[M1	-	May be other for first M1 fir term	variations: and x^2 term or x^3
	4	$48x^2 - 80x^3$ o.e.	A1			
	М	ultiply by $1 + 3x$	M1		for second M1 relevant terms	must produce all
	64	L	A1]			
	O (1	$r + 3x) (64 + 192x + 240x^2 + 160x^3)$	[M1	-		
		$816x^2 + 880x^3$ o.e.	A1			
	М	ultiply by $1 - x$	M1			
	64		A1]			

Page 7	Mark Scheme		Syllabus	Paper	
	IGCSE – May/June 2013		0606	23	
			I		
8	Eliminates y (or x) and full attempt at expansion	M1			
	$4x^2 - 8x - 96 = 0 \text{or } y^2 + 12y - 64 = 0$	A1			
	Factorise 3 term relevant quadratic	M1	Or use correct fo	ormula	
	x = -4 and 6 or $y = -16$ and 4	A1			
	y = -16 and 4 or $x = -4$ and 6	A1√			
	Uses Pythagoras for relevant points	M1			
	22.4 or $\sqrt{500}$ or $10\sqrt{5}$	A1	cao		
9 (i)	Attempt to solve 3 term quadratic	M1			
	-3 and 8	A1			
	-3 x 8	A1	Condone $-3 x$	x = AND x = 8	
(ii)	4 <i>x</i> (12)	B 1			
	$S \cup T = -3$ x 12	B 1			
(iii)	$S \cap T = 4$ x 8 or S' = -5 x $-3, 8$ x 12 and T' = -5 x 4	B1	Penalise confusion over and (or and) once only		
	-5 x 4	B 1√	their 4		
	8 x 12	B 1√	their 8 (Ignore A	AND/OR etc.)	

Page 8		Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2013		0606	23
10 (i)		$\frac{n\alpha}{50} = \frac{\sin 58}{240}$	M1 A1	Use of sin rule/c rule/resolving w 58/32/122/148. Must be correct	osine ith 50, 240 and for A1
	α	=10.2	A1		
	Be	earing (0)21.8 or (0)22	A1√	$\sqrt{1}$ for $32 - \alpha$	
(ii)	V^{2}	$a^{2} = 240^{2} + 50^{2} - 2 \times 240 \times 50 \times \cos(122 - \alpha)$	M1	Correct use of si rule/resolving	n rule/cosine
	V	= 263 awt	A1	Can be in (i)	
	Т	$=\frac{500}{V}$	M1	Only allow if V calculated from non right-angled triangle	
	11	4 or 1 hour 54 mins	A1	Do not allow inc	correct units
	O <i>T</i>	$=\frac{500\cos 32}{240\cos 21.8}$	[M1 Alternati Also can (457) the		part (ii) only stance for 240 240
	50	00 cos 32	B 1		
	24	40 cos 21.8	B 1		
	11	4 or 1 hour 54 mins	A1]		
11 (i)	1		B1	Not a range for $x = 1$ and $x = 1$	k, but condone
(ii)	f	-5	B 1	Not x , but condo	one y
(iii)	Μ	ethod of inverse	M1	Do not reward p allow slips	oor algebra but
	1-	$+\sqrt{x+5}$	A1	Must be $f^{-1} = or y =$	
(iv)	f: do	Positive quadratic curve correct range and main	B 1	Must cross <i>x</i> -axis	
	f^{-1}	: Reflection of f in $y = x$	B1 √	$\sqrt{their} f(x)$ sketch Condone slight inaccuracio unless clear contradiction.	
(v)	Aı qu	rrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term adratic = 0	M1		
4 o		only www	A1	Allow $x = 4$ with Condone (4, 4). Do not allow fin also given in ans	n no working. al A mark if –1 swer

Page 9			Mark Scheme	Syllabus	Paper		
			IGCSE – May/June 2013		0606	23	
12	(i)	f(3	(27 + 9 + 3a + b) = 0 or 3a + b = -36	M1	Equate $f(3)$ to 0		
		f(-	(-1) = (-1 + 1 - a + b) = 20 or $-a + b = 20$	M1	Equate $f(-1)$ to 20		
		So	lve equations	M1			
		a =	$=-14, \ b=6$	A1	If uses $b = 6$ the Need both value	n M0, A0 s for A1	
	(ii)	Fi	nd quadratic factor	M1	If division, must with first 2 term If writes down, n $(x^2 + kx - 2)$	t be complete s correct must be	
	x		-4x-2	A1			
	1		se quadratic formula or completing square on levant 3 term quadratic	M1	If completing sq $\left(x + \frac{k}{2}\right)^2 = 2 \pm \left(x + \frac{k}{2}\right)^2$	uare, must reach $\left(\frac{k}{2}\right)^2$	
		_	$\frac{4 \pm \sqrt{16 + 8}}{2}$ or better	A1 √			
		_	$2 \pm \sqrt{6}$ isw	A1	cao		