MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4		Mark Scheme		Syllabus	Paper	
		IGCSE – May/June 2013		0606	22	
1		$m = \frac{18-3}{4-1}$ or 5 soi Y-3 = their 5(X-1) or Y-18 = their 5(X-4)	M1	or $18 = 4m + c$ subtracting/sub for <i>m</i> or <i>c</i> , cond	stituting to solve	
		or 3 = their 5 + c or 18 = their 5 × 4 + c $\sqrt{y} = (their m) x^2 + (their c)$ or	M1	or using <i>their m</i> or <i>their c</i> to find <i>their c</i> or <i>their m</i> , without further error		
		$\sqrt{y} = (their m) (x^2 - 1) + 3 \text{ or}$ $\sqrt{y} = (their m) (x^2 - 4) + 18$	M1	their <i>m</i> and <i>c</i> m obtained	ust be validly	
		$y = (5x^2 - 2)^2$ or $y = (5(x^2 - 1) + 3)^2$ or $y = (5(x^2 - 4) + 18)^2$ cao, isw	A1			
2	(a)	$(p+1)\ln 3 = \ln 0.7$	M1	or $p + 1 = \log_3 (0, 7)$		
		$p = \frac{\ln 0.7}{\ln 3} - 1$ or $p = \frac{\lg 0.7}{\lg 3} - 1$	M1	$p \ln 3 = \ln \left(\frac{0.7}{3} \right)$ or $p = \log_3 0.7$ or $p \ln 3 = \ln \left(\frac{0.3}{3} \right)$	- 1	
		-1.32 cao	A1	allow M2 for $p = \log_3\left(\frac{0.7}{3}\right)$ correct answer only scores B3		
	(b)	$2^{\frac{5}{2}} \times x^6 \times y^{-\frac{1}{2}}$ or $a = \frac{5}{2}, b = 6, c = -\frac{1}{2}$	B3	B1 for each cor	nponent	
3	(a) (i)	A and E	B2	1 mark for each B1 for 1 extra, 2 extras		
	(ii)	C and D	B2	1 mark for each B1 if 1 extra, B extras		
	(b)	5 ^y 5 ^y 5 ^x	B2		oints correct and ree points correct	

	Page 5	Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013		0606	22
4	(i)	$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} \text{ or}$ $\overrightarrow{OB} - \overrightarrow{OA} = 3(\overrightarrow{OC} - \overrightarrow{OA}) \text{ soi}$	B1	or $3\overrightarrow{AC} = 3(c_1 - o.e. \text{ soi})$	$-4)\mathbf{i} + 3(c_2 + 21)\mathbf{j}$
		$\pm (18\mathbf{i} - 9\mathbf{j})$ o.e. or $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB}$	B1		
		$4\mathbf{i} - 21\mathbf{j} + \frac{1}{3}(their(18\mathbf{i} - 9\mathbf{j}))$ o.e. or $\frac{2}{3}(4\mathbf{i} - 21\mathbf{j}) + \frac{1}{3}(22\mathbf{i} - 30\mathbf{j})$	M1	or $3(c_1 - 4) = th$ $3(c_2 + 21) = the$	
		$10\mathbf{i} - 24\mathbf{j}$ cao	A1		
	(ii)	$\left \overrightarrow{OC}\right = \sqrt{their10^2 + their(-24)^2}$ soi	M1	$\left \overrightarrow{OC} \right = \sqrt{their10}$	$(24)^2 + their(24)^2$
		$\frac{1}{13}(5i-12j)$ or $\frac{1}{26}(10i-24j)$ isw	A1 FT	FT their $x\mathbf{i} + y\mathbf{j}$	o.e.
5		$AX = \sqrt{45}$	B1	may be implied	by $3\sqrt{5}$
		$AX = 3\sqrt{5}$	B 1	may be seen lat	ter
		$\frac{1}{2}\left(4+\sqrt{5}+2+x\right)\times their \sqrt{45} \text{ soi}$	M1	may be implied summation of r triangles	l by e.g. ectangle and two
		$15(\sqrt{5}+2) = \frac{1}{2}(4+\sqrt{5}+2+x) \times their \sqrt{45}$ or better	M1	trangies	
		Correctly divide <i>their</i> equation by <i>their</i> $\sqrt{5}$ or <i>their</i> $\sqrt{45}$ and rationalise denominator	M1	-	
		completion to $4 + 3\sqrt{5}$ www	A1	answer only do	es not score

	Page 6		Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2013		0606	22
-		1				
6	(i)	arc 2	$AB = r\left(\frac{\pi}{3}\right)$	B1		
			d $AB = r$ with justification and summation completion to given answer	B1	$r\left(\frac{3+\pi}{3}\right)$	
	(ii)		r = 12.7		must be seen; a	ccept awrt 12.7
		$\frac{1}{2} \times their \ r^2 \times \left(\frac{\pi}{3} - \sin\left(\frac{\pi}{3}\right)\right)$		M3	may be implied 84.45 69.84	····
					or M1 for $\frac{1}{2} \times t$	<i>heir</i> $r^2 \times \frac{\pi}{3}$ or
					84.45 and	2π
					M1 for $\frac{1}{2} \times thei$	$rr^2 \times \sin \frac{\pi}{3}$ o.e.
					or 69.84 and	
		awrt	14.6	A1	M1 for Area Se triangle attempt	
7	(i)	k(3	$(-5x)^{11}$	M1		
		5×1	$2(3-5x)^{11}$ or better, isw	A1		
	(ii)	$x^2(th$	$eir\cos x) + (their 2x)\sin x$	M1	clearly applies of product rule	correct form of
		$x^2 cc$	$sx + 2x \sin x$ isw	A1		
	(iii)		tient rule attempt:		Product rule att	•
		$\frac{\mathrm{d}}{\mathrm{d}x}($	$\tan x = \sec^2 x$	B1	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec x$	
		uл	$1+e^{2x}\Big)=2e^{2x}$	B1	$\frac{\mathrm{d}}{\mathrm{d}x}(1+\mathrm{e}^{2x})^{-1} =$	$(-2e^{2x}(1+e^{2x})^{-2})$
		clearly applies correct form of quotient rule $\frac{(1 + e^{2x})(their \sec^2 x) - (their 2e^{2x})\tan x}{(1 + e^{2x})^2}$		M1	$\tan x (their - 2e)$ $(1 + e^{2x})^{-1}(their$	$e^{2x}(1+e^{2x})^{-2}) + \sec^2 x$
		<u>(1+</u>	$\frac{e^{2x})\sec^2 x - 2e^{2x}\tan x}{(1+e^{2x})^2}$ isw	A1	$\tan x \left(-2e^{2x}(1+(1+e^{2x})^{-1}(\sec^2 x)^{-1}(\sec^2 x)^{-1}(\csc^2 x)^$	$(e^{2x})^{-2} + (e^{2x})^{-2}$

	Page 7	1	Mark Scheme		Syllabus	Paper	
			IGCSE – May/June 2013		0606	22	
8	(i)	<i>y</i> – 2	$2 = \left(\frac{6-2}{2+6}\right)(x+6)$ o.e. soi	M1	or $y - 6 = \left(\frac{6 - 2}{2 + 1}\right)$	$\left(\frac{2}{6}\right)(x-2)$	
		<i>y</i> =	$\frac{1}{2}x + 5$ isw	A1			
	(ii)		of $m_1m_2 = -1$ b = (their -2)(x - 2) or better, isw	M1 A1 FT	or $y = (their - 2)$ c = their 10, isv	/ /	
	(iii)	ii) $(x+6)^2 + (y-2)^2 = 10^2$ o.e. B1		B1	or $(x-2)^2 + (y-6)^2 = (\sqrt{20})^2$ o.e. or $(\sqrt{80})^2 + ((x-2)^2 + (y-6)^2) = 10^2$		
		Subs	stitute $y = their (-2x + 10)$	M1*	or identifying o inspection from equation and tes equation of <i>BC</i>	the length sting it in the	
		Solv	e their quadratic	M1 dep*	or identifying the second point by inspection from the length equation and testing it in the equation of <i>BC</i> or vice versa		
		(0, 1	0) and (4, 2) o.e. only	A1	answer only do	es not score	
9	(a)	14 =	$k + c$ and $6 = \frac{k}{9} + c$ o.e.	M1	for two equations in <i>k</i> and <i>c</i> ; n be unsimplified; condone one slip in one equation		
		$c = \frac{4}{2}$ $k = \frac{9}{2}$		A1 A1			
	(b) (i)	79.2	or 79.158574 rot to 4 or more sf	B1			
	(ii)	$e^{2x} + (e^{x})^{2}$	$5e^{x} - 24(=0)$ or + $5e^{x} - 24(=0)$ o.e.	M1	condone one er	ror, but must be	
			brise <i>their</i> 3 term quadratic	M1	or correct/corre	ct ft use of pleting the square	
		rot t	3 n 3 or 1.1(0) or 1.0986122 o 3 or more sf as only answer from fully rect working	A1 A1	ignore $e^x = -8$ do not allow fin given from $e^x =$	al mark if value -8	
			- 0			SC2 if $e^x = 3$ is leads to $x = \ln 3$ or 5122 rot to 3 or	

Page 8	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	22
10 (a) (i)		B1 B1 B1 B1	be approaching be centred on y	
(ii)	3	B1		
(iii)	180	B1		
(b)	$\operatorname{cosec} x = \frac{1}{\sin x} \operatorname{soi}$	B1	or $1 + \tan^2 x = -$	
	$\sin x = \sqrt{1 - \cos^2 x} \text{ or } \sqrt{1 - p^2}$	B1	or $\csc^2 x = 1 +$	$-\frac{1}{1-p^2/p^2}$ soi
	$\frac{-1}{\sqrt{1-p^2}}$ o.e.	B1	$\operatorname{or} - \sqrt{1 + \frac{p^2}{1 - p^2}}$	

Page 9		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013		0606	22
r				1	
11 (-	$\frac{dy}{dx} = 3 - 3(x - 4)^{-4}$ o.e. isw	B1 + B1		
		$\frac{d^2 y}{dx^2} = (their \ 12)(x-4)^{their \ (-5)} \text{ o.e.}$	M1		
	-	$\frac{d^2 y}{dx^2} = 12(x-4)^{-5}$ o.e. isw	A1	if M0 then SC1 for $12(x-4)^{-5}$ one other term	
		Verifies $\frac{dy}{dx} = 0$ when $x = 3$ and $x = 5$	M1	correctly solvin	
	C	or solves $3 - \frac{3}{(x-4)^4} = 0$ to obtain 3 and 5		coordinate and gives rise to the coordinate	showing that it e corresponding y
	S	Shows that $x = 3 \Rightarrow y = 8$ and $x = 5 \Rightarrow y = 16$	A1		
		$x = 5 \frac{d^2 y}{dx^2}$ (=12) > 0 \Rightarrow min or	M1	or, using first d	erivative e.g.
	x	$r = 3 \frac{d^2 y}{dx^2} (= -12) < 0 \implies \max$		$\frac{\frac{dy}{dx}}{\min \text{ at } x = 5}$	0
				or $x - y$	3 +
				$\frac{\mathrm{d}y}{\mathrm{d}x}$	0
				max at $x = 3$	
	I	Both correct cao	A1		
	(iv)	$\frac{3x^2}{2} - \frac{(x-4)^{-2}}{2}(+c)$ o.e. isw	B1 + B1	may be unsimp	lified
	· /	heir			
	-	$\left[\left(\frac{3(6)^2}{2} - \frac{1}{2(6-4)^2}\right) - \left(\frac{3(5)^2}{2} - \frac{1}{2(5-4)^2}\right)\right]$	M1		
	1	6.875 to 3 or more sf or $\frac{135}{8}$ or $16\frac{7}{8}$ cao	A1		