

MATHEMATICS

0580/12 October/November 2018

Paper 1 Core MARK SCHEME Maximum Mark: 56

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	Obtuse	1	
2	60 ^[°]	1	
3	2.3×10^4	1	
4(a)	$\begin{pmatrix} -1\\ 4 \end{pmatrix}$	1	
4(b)	$\begin{pmatrix} -21\\ 28 \end{pmatrix}$	1	
5	$6x - 2x^3$ final answer	2	B1 for $6x$ or $-2x^3$
6	24	2	M1 for $\frac{DE}{27} = \frac{16}{18}$ oe or scale factor, 1.5 or $\frac{2}{3}$ seen
7	9.85 or 9.850 to 9.851	2	M1 for $\cos 52 = \frac{x}{16}$ oe or better
8	37	2	B1 for 25 or 12
9	$\begin{array}{c} 25\%\\ \underline{47}\\ 100\\ 60\% \end{array}$	3	B1 for each
10(a)	102	2	B1 for 8.3 to 8.7
10(b)	[0]64 ^[0]	1	
11(a)(i)	Arrow at $\frac{3}{4}$	1	Clear indication
11(a)(ii)	Arrow at 0	1	Clear indication
11(b)	[0].36 oe	1	

Cambridge IGCSE – Mark Scheme PUBLISHED

Answer	Marks	Partia	Marks
2124	3	M2 for $1800 + \frac{1800 \times 4.5 \times 4}{100}$ or M1 for $\frac{1800 \times 4.5 \times 4}{100}$	
Any example of equivalence from the	M1	Examples	
		Dollars (\$)	Pounds (£)
		5	3.5
		10	7
		20	14
		30	21
		40	28
		7	5
		14 to 14.5	10
		21	15
		28 to 29	20
Shop and [£]81 to [£]87 or [\$]126 to [\$]138 nfww	A2	[\$]138 If M0 allow SC1 fo [\$]120 = [£]81 to [£	r]87
45	1		
6 <i>n</i> – 10 oe	2	B1 for $6n + c$ or $kn - c$	$-10 \ (k \neq 0)$
Correct pie chart e.g.	4	B3 for correct chart no labels or for 2 correct sectors with or without labels or B2 for 3 correct angles seen (171°, 135° and 54°) or 3 correct percentages (47.5%, 37.5% and 15%) or M1 for method e.g. $\frac{57}{120} \times 360$, 57 × 3 or $\frac{57}{120} \times 100$ oe	
	Any example of equivalence from the conversion graph Shop and [f]81 to [f]87 or [\$]126 to [\$]138 nfww 45 $6n - 10$ oe Correct pie chart e.g. $e.g.$	Any example of equivalence from the conversion graphM1 $Any example of equivalence from theconversion graphM1Shop and [£]81 to [£]87or [$]126 to [$]138 nfwwA2A2A2A516n - 10 oe2Correct pie charte.g.4$	M2 for $1800 + \frac{1}{100}$ Any example of equivalence from the conversion graphM1ExamplesDollars (\$)510203040714 to 14.52128 to 29Shop and [£]81 to [£]87 or [\$]126 to [\$]138 nfwwA2A1 for [£]81 to [£]81 to [£]8 [\$]138If M0 allow SC1 for [\$]120 = [£]81 to [£]If M0 allow SC1 for [\$]120 = [£]81 to [£] or [£]90 = [\$]126 to as the answer4516n - 10 oe2B1 for $6n + c$ or kn - cor for 2 correct hart e.g.correct pie chart e.g.4B3 for correct chart or 3 correct percenta and 15%)or M1 for method

Cambridge IGCSE – Mark Scheme PUBLISHED

Question	Answer	Marks	Partial Marks
16(a)	68.921	1	
16(b)	-53	1	
16(c)	[0].35	1	
16(d)	5	1	
17(a)	$2^3 \times 7 \text{ or } 2 \times 2 \times 2 \times 7$	2	B1 for identifying 2 and 7 as the only prime factors
17(b)	168	2	B1 for $168k$ or $2 \times 2 \times 2 \times 3 \times 7$ oe or for listing multiples of each up to 168
18(a)	Correct ruled bisector with two pairs of arcs	2	B1 for correct ruled bisector with no/wrong arcs
18(b)	Correct arc centre <i>E</i> radius 3 cm inside pentagon	1	
18(c)	Correct region shaded	1	Dependent on at least B1 in part (a) and 1 mark in part (b) and a closed region
19	multiplying both equations to get a common coefficient	M1	
	correctly adding or subtracting <i>their</i> equations	M1	
	[<i>x</i> =] 10	A1	
	[<i>y</i> =] 8	A1	If zero scored then SC1 for two answers which satisfy one of the original equations or for 2 correct answers with no working
20(a)	-3, 2	1	
20(b)	<i>B</i> plotted at $(1, -3)$	1	
20(c)	$\frac{1}{2}$ or 0.5	2	M1 for $\frac{Rise}{Run}$ e.g. $\frac{2}{4}$ or $\frac{21}{24}$
20(d)	$y = \frac{1}{2}x + 1 \text{ oe}$	1	FT <i>their</i> (c) e.g.[$y =$] <i>their</i> (c) $x + 1$ oe