MARK SCHEME for the March 2015 series

0580 MATHEMATICS

0580/22

Paper 2 (Paper 22 – Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®] components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – March 2015	0580	22

Abbreviations

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

	Qu. Answers		Mark	Part Marks
1		Negative	1	
2		96	2	B1 for 96 <i>k</i> or $2^5 \times 3$ or for listing multiples of each up to 96
3		572.4	2	M1 for figs $(120 \times 90 \times 53)$
4		7p(2p+3q)	2	B1 for $7(2p^2 + 3pq)$ or $p(14p + 21q)$
5		18 – 5 <i>n</i> oe	2	M1 for 5 <i>n</i> or -5 <i>n</i>
6	(a)	Correct arc centre <i>B</i> , radius 5.7	1	
	(b)	Shading below CN outside arc	1FT	FT shading below CN outside their arc centre B
7		37	2	M1 for $180 - 90 - 53$ oe or B1 for 53 or the right angle, either marked in correct place on diagram
8	(a)	68	1	
	(b)	15	2	M1 for $\frac{360}{n} = 24$ or $(n-2)180 = 156n$
9		400 350 250	3	M1 for $\frac{1000}{8+7+5}$ implied by 50 A1 for one clearly assigned correct answer or SC2 for 3 correct answers in wrong order
10	(a)	x + x + 4 + x + 4 = 26 oe	1	
	(b)	6[.00] cao	2	M1 for their linear eqn simplified to $ax = b$

Page 3	3 Mark Scheme Cambridge IGCSE – March 2015			Syllabus Paper	
				0580	22
11	Correctly eliminating one variable [x =] 6 $[y =]\frac{1}{4}$	M1 A1 A1	If 0 scored SC1 for 2 values satisfying one of the original equations SC1 if no working shown but correct answers given		
12	44 300 cao	3	M1 for $50000 \times (0.97)^4$ oe and B1 for 44260 or better or SC1 for correct method for 3% increase with final answer of 56300		
13	12	3	M1 for $x = k \sqrt[3]{y}$ oe A1 for $k = 3$ or M2 for $\frac{6}{\sqrt[3]{8}} = \frac{x}{\sqrt[3]{64}}$	De	
14	3y + x = 19 oe	3	M1 for their $m \times 3 = -$ M1 for $4 = 7 \times$ their m	-	soi
15 (a)	$\begin{pmatrix} 76 & 30 \\ 40 & 16 \end{pmatrix}$	2	B1 for two correct elements	ments	
(b)	$\frac{1}{4} \begin{pmatrix} 2 & -3 \\ -4 & 8 \end{pmatrix} $ oe	2	B1 for $k \begin{pmatrix} 2 & -3 \\ -4 & 8 \end{pmatrix}$ so or det = 4 soi	i or $\frac{1}{4} \begin{pmatrix} a & b \\ c & c \end{pmatrix}$	$\begin{pmatrix} b \\ d \end{pmatrix}$ seen
16	$\frac{25}{9}$ $\frac{a}{b} \times \frac{6}{5} \text{ where } a > b$	B1 M1	(Alt) $\frac{25}{9}$ $\frac{their 25 \times 2}{9 \times 2} \div \frac{5 \times 3}{6 \times 3}$ oe		
	Their $\frac{150}{45}$ or <i>their</i> correct full cancelling	M1FT dep	$\frac{their 25 \times 2}{5 \times 3} \text{ oe or}$ $\frac{50}{18} \div \frac{15}{18} \text{ oe with } 18\text{'s c}$	cancelled	
	$\frac{10}{3}$ or $3\frac{1}{3}$ nfww	A1			

Ра	ge 4	Mark Scheme			Syllabus Paper	
		Cambridge IGCSE – March 2015		0580	22	
17	(a)	b – a	2	2 M1 if unsimplified or correct route of P, Q, R, S		
	(b)	$\frac{5}{8}\mathbf{x} + \frac{3}{8}\mathbf{y}$	2	M1 for a correct route e.g. $OX + XM$ or for $\frac{3}{8}\overrightarrow{XY}$ or $\frac{5}{8}\overrightarrow{YX}$		
18		14.4 or 14.36	4	M3 for tan = $\overline{their\sqrt{1}}$ or M1 for $AC = \sqrt{15^2}$ and M1 for identifying	$+18^{2}$	
19		95	4	B1 for 2.3 or $2\frac{18}{60}$ M1 for 75 ÷ 30 (= 2.5) M1 for $\frac{381+75}{their 2.3 + the}$	-	
20	(a)	35	2	M1 for $[Z =] 180 - 88$ or $YZX = 35$	8 – 57 or <i>VWX</i>	K = 57
	(b)	10.8	2	M1 for $\frac{AC}{7.2} = \frac{12.6}{8.4}$ of	e	
21	(a) (i) (ii)	1 m ⁷	1 1			
	(iii)	$2p^2$	2	SC1 for $2p^k$ or kp^2	$k \neq 0$	
	(b)	$\frac{2}{5}$ or 0.4	2	B1 for 3^5 or 3^{5x} or	$243^{\frac{1}{5}}$ or 243	$\frac{2}{5}$ seen
22	(a)	17	2	M1 for $[g(-2) =]4$ so	een or for $5x^2$	- 3
	(b)	$25x^2 - 30x + 9$ or $(5x - 3)^2$ as final answer	2	M1 for $g(5x-3)$		
	(c)	$\frac{x+3}{5}$	2	M1 for $5x = y + 3$ or $\frac{y}{5} = x - \frac{3}{5}$	x = 5y - 3 or	r