MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0580	22

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
soi	seen or implied

Qu	Answers	Mark	Part Marks
1	B	1	
		1	
2	(p+3)(k+m)	2	B1 for $k(p+3) + m(p+3)$ or $p(k+m) + 3(k+m)$
3	17 - 4n	2	B1 for $\pm 4n$ seen
4	4.55×10^{8}	2	B1 for figs 455 seen
5	10.5 www	2	M1 for $42 = \frac{1}{2} \times BC \times 8$ or better
6	2.2[0]	2	M1 for 11.99 ÷ 0.626 soi by 19.2 or 19.15
7 (a)	5.17225	1	
(b)	5.2	1FT	FT their (a)
8	6.1 final answer	2	M1 for [√37.8225=] 6.15
9	40.3 or 40.31 to 40.32	3	M2 for $4.4 \times \sqrt[3]{\frac{0.05}{65}}$ soi
			or M1 for $\sqrt[3]{\frac{0.05}{65}}$ soi or $\sqrt[3]{\frac{65}{0.05}}$ soi
10 (a)	95	1	
(b)	77	2	B1 for [angle] $ACD = 58^{\circ}$ or [angle] $BAC = 19^{\circ}$ or [angle] $ANB = 103^{\circ}$ or [angle] $CAE = 66^{\circ}$

Mark Scheme	Mark Scheme		Paper
IGCSE – May/June 2013		0580	22
Answers	Mark	Part Marks	
with 2 correct steps seen $\frac{18k}{35k}$	3	B1 for $\frac{5k}{3k}$ and M1 for $\frac{6}{7} \times their \frac{3}{5}$	
14.5 oe	3	M2 for complete correct method or M1 for one correct step	
6632.55 cao final answer	3	M2 for $6250 \times (1 + \frac{2}{100})^3$ oe or M1 for $6250 \times (1 + \frac{2}{100})^2$ oe SC2 for answer 382.55 final answer	
0.625 oe	3	M1 for $y = \frac{k}{x^3}$ A1 for $k = 40$	
$\frac{-7 \pm \sqrt{7^2 - 4(2)(-3)}}{2 \times 2}$	B2	B1 for $\sqrt{7^2 - 4(2)}$ B1 for $p = -7$ and as long as in the $\frac{p - \sqrt{q}}{r}$	(-3) or better seen $r = 2 \times 2$ or better form $\frac{p + \sqrt{q}}{r}$ or
0.39, –3.89 cao	B1,B1	After B0B0 for SC1 for 0.4 or 0.3 and -3.9 or -3.886 or SC1 for -0.39 a	the two answers, 86[0009] [0009] nd 3.89
15	4	M2 for $\frac{1}{2} \times 40 \times (20)$ or M1 for one value Indep M1 for $\div 60$ SC3 for answer 90	6 + 19) oe d area calculation 0
7 correct plots	2	P1 for 5 or 6 correct	ct
Negative	1		
ruled line of best fit within tolerance	1		
	Mark Scheme IGCSE – May/June 201 Answers with 2 correct steps seen $\frac{18k}{35k}$ 14.5 oe 6632.55 cao final answer 0.625 oe $-7 \pm \sqrt{7^2 - 4(2)(-3)}$ 2×2 0.39, -3.89 cao 15 7 correct plots Negative ruled line of best fit within tolerance	Mark Scheme IGCSE – May/June 2013 Answers Mark with 2 correct steps seen 3 $18k$ 3 14.5 oe 3 6632.55 cao final answer 3 0.625 oe 3 $-7 \pm \sqrt{7^2 - 4(2)(-3)}$ B2 2×2 B1,B1 15 4 Negative 1 ruled line of best fit within tolerance 1	Mark SchemeSyllabusIGCSE – May/June 20130580AnswersMarkPart Markswith 2 correct steps seen3BI for $\frac{5k}{3k}$ $18k$ $35k$ and M1 for $\frac{6}{7} \times that$ 14.5 oe3M2 for complete corr or M1 for one corr6632.55 cao final answer3M2 for 6250 × (1 - or M1 for 0.4 or 3.3 and -3.9 or -3.88 or SC1 for 0.4 or 0.3 and -3.9 or -3.88

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0580	22

Qu		Answers	Mark	Part Marks
18		-1 -2 -3 -4	4	B3 for $x < \frac{-3}{5}$ and $x > -4.5$ oe or B2 for $x < \frac{-3}{5}$ or $x > -4.5$ oe or B1 for $5x < -3$ or $-9 < 2x$ oe
				Or mark on answer line -1 oe
19	(a)	arc centre A radius 5 cm	2	B1 arc with centre A
	(b)	ruled perpendicular bisector of <i>DB</i> with 2 pairs of correct arcs	2	B1 correct ruled line B1 2 pairs of correct arcs
	(c)	cao	1	
20	(a)	$10 < h \le 13$	1	
	(b)	12.1[2] www	4	M1 for at least 5 correct mid-values seen
				M1 for $\sum fx$ where <i>x</i> is in the correct interval
	(c)	70, 115, 153, 185, 200	2	M1 for their $\sum fx \div 200$
				B1 for 3 or 4 correct
21	(a)	4.5 oe	2	B1 for $[g(5)=] 0.1$ oe
	(b)	x	2	M1 for $\frac{1}{2(\frac{1}{2x})}$ seen oe
	(c)	$\frac{x-4}{5}$ oe	2	M1 for a correct first step V 4
				e.g. $y - 4 = 5x$ or $\frac{y}{5} = x + \frac{1}{5}$ or $x = 5y + 4$
	(d)	- 3	2	M1 for $\left(\frac{1}{2}\right)^{-3} = 8$ or $\left(\frac{1}{2}\right)^{x} = \left(\frac{1}{2}\right)^{-3}$ or $2^{x} = \frac{1}{8}$ oe or $2^{-x} = 2^{3}$