

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CHEMISTRY 0620/61

Paper 6 Alternative to Practical

October/November 2017

MARK SCHEME

Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Question	Answer	Marks
1(a)	evaporating basin / dish	1
1(b)	zinc oxide	1
1(c)(i)	filtration	1
1(c)(ii)	no filter paper	1
1(d)	heat / boil / evaporate	1
	to crystallising point	1
	cool / leave to stand	1

Question	Answer	Marks
2(a)	average temperatures completed for all five experiments: 18, 31, 41, 53, 63	1
	times completed for all five experiments: 210, 111, 84, 66, 54	1
	all times in seconds	1
2(b)	all five points plotted	3
	smooth line graph	1
2(c)	value from graph for average temperature 72 °C	1
	unit (s)	1
	shown clearly	1
2(d)	line above experimental line	1
2(e)(i)	Experiment 5	1

Question	Answer	Marks
2(e)(ii)	particles move faster / particles have more energy	1
	more (frequent) collisions / greater chance of collisions	1
2(f)(i)	more accurate	1
	comparison to measuring cylinder	1
2(f)(ii)	time shorter / cross disappears faster	1
	depth greater	1

Question	Answer	Marks
3(a)(i)	red-brown	1
	precipitate	1
3(a)(ii)	insoluble / no change	1
3(b)	red-brown precipitate	1
3(c)	(red) litmus paper	1
	turns blue	1
3(d)	ammonia	1
3(e)	lithium	1
	carbonate	1

Question	Answer	Marks
4	reaction with acid method	6
	max [6]:	
	M1 fixed volume of acid	
	M2 to fixed mass of metal	
	M3 measure volume of gas / temperature change	
	M4 named apparatus for the measurement	
	M5 after time	
	M6 repeat with other metals	
	M7 compare / conclude	
	displacement method	
	M1 add each metal to named tin salt solution	
	M2 observe if deposit is formed	
	M3 results, e.g. Zn and Fe positive	
	M4 repeat with named iron salt	
	M5 results, e.g. Zn positive	
	M6 conclude	

© UCLES 2017 Page 4 of 4