

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/63
Paper 6 Alterna	tive to Practical		May/June 2017
			1 hour
Candidates ans	wer on the Question Paper		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 A mixture of alcohols can be separated by fractional distillation. The apparatus shown was used to separate ethanol from the mixture.

(a)	(i)	Complete the box to identify the apparatus.	[1]
	(ii)	Indicate with an arrow where heat is applied.	[1]
(b)	Wh	at is the purpose of the water?	
(c)	Wh	y is the thermometer bulb placed as shown and not in the mixture of alcohols?	
			[1]
(d)	Use	e the letter E to indicate on the diagram where ethanol would collect.	[1]
(e)	(i)	Suggest a simple chemical test to show that the liquid collected is ethanol and not wa	ter.
	(ii)	Give a physical test to identify pure ethanol.	[1]
	\-· <i>'</i>		[1]

[Total: 8]

© UCLES 2017 0620/63/M/J/17

2 A student investigated the rate of reaction between magnesium ribbon and two different solutions of dilute sulfuric acid, solution **G** and solution **H**. The acid was in excess in both experiments.

Two experiments were carried out.

Experiment 1

The apparatus was set up as shown in the diagram.

- Using a measuring cylinder, 50 cm³ of solution **G** were poured into the conical flask. A piece of magnesium ribbon was added to the conical flask and the bung replaced.
- The timer was started immediately and the total volume of gas collected in the measuring cylinder was measured every 20 seconds for 180 seconds (3 minutes).

Experiment 2

• Experiment 1 was repeated using 50 cm³ of solution **H** instead of solution **G**.

(a) Use the measuring cylinder diagrams to record the volumes of gas collected in Experiment 1.

	Experi	ment 1	Experiment 2
time/s	measuring cylinder diagram	volume of gas/cm ³	volume of gas/cm ³
0	9- 9-		0
20	10 = 10		8
40	= 50 = 30		14
60	96- 07- 97-		21
80	07 = G7 = 09 =		27
100	09 = = = = = = = = = = = = = = = = = = =		33
120	99 ===================================		39
140	92 = 08 = 98 =		45
160	98 = 06 = 96 = 96 = 96		50
180	98 = 06 = 96 = 96 = 96 = 96 = 96 = 96 = 96		55

(b) Plot the results for Experiments 1 and 2 on the grid and draw **two** smooth line graphs. Clearly label your graphs.

(c)	Which experiment had the faster rate of reaction? Suggest a reason why the rate was faster in this experiment.

	(d)	The average rate of th	s reaction can b	e calculated i	using the equation sho	wn
--	-----	------------------------	------------------	----------------	------------------------	----

average rate =
$$\frac{\text{volume of gas/cm}^3}{\text{time taken/s}}$$

For Experiment 1, calculate the average rate of reaction for the first 30 seconds of the reaction. Include the units.

	rate =
	units =[3
(e)	Why, eventually, will no more gas be produced?
	[1]
(f)	Suggest the effect on the rate of reaction of using the same mass of magnesium powder instead of magnesium ribbon. Explain your answer.
	[2]
(g)	Give one advantage and one disadvantage of using a measuring cylinder to measure the volumes of solution G and solution H .
	advantage
	disadvantage[2
(h)	Suggest one improvement to these experiments.
	[1]

[Total: 18]

© UCLES 2017 0620/63/M/J/17

3 Two substances, solid $\bf J$ and solution $\bf K$, were analysed. Solution $\bf K$ was hydrogen peroxide. Tests on each substance were carried out. The observations are shown.

tests	observations
tests on solid J	
Appearance of solid J .	black solid
test 1	
Dilute hydrochloric acid was added to solid J . The mixture was heated and the gas given off was tested with damp litmus paper.	blue litmus turned white
tests on solution K	
Solution K was divided into two equal portions in two test-tubes.	
test 2	
Iron(II) sulfate crystals were added to the first portion of the solution. The mixture was shaken and aqueous sodium hydroxide was added to the mixture.	red-brown precipitate formed
test 3	
Solid J was added to the second portion of the solution. The gas given off was tested with a splint.	glowing splint relit solid J was unchanged
(a) Name the gas given off in test 1.	
	[1]
(b) (i) Name the precipitate formed in test 2.	[2]
	ulfate crystals were added to water , the mixture ydroxide was added.
What would be observed?	
	[2]

(c)	Name the gas given off in test 3.
	[1]
(d)	What conclusions can you draw about solid J ?
	[2]
	[Total: 8]
Cas	ssiterite is a naturally occurring form of tin oxide.
Des	scribe how you would obtain a sample of tin from a large lump of cassiterite in the laboratory, determine the percentage by mass of tin present in cassiterite.
Tin	is similar in reactivity to iron.
You	r answer should include any apparatus and chemicals used and the conditions required.
	[6]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

[Total: 6]

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 0620/63/M/J/17