

Cambridge International General Certificate of Secondary Education

CHEMISTRY

Paper 2 Multiple Choice (Extended)

0620/21 October/November 2016

45 minutes

Additional Materials: Multiple Choice Ar Soft clean eraser

Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

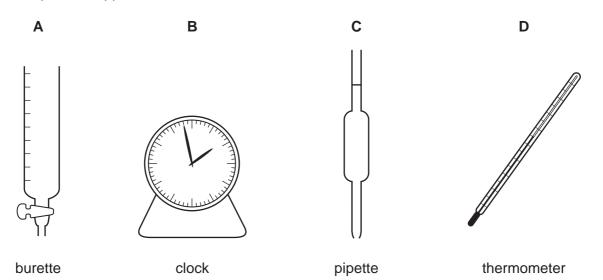
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 20. Electronic calculators may be used.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 20 printed pages.


1 'Particles moving **very slowly** from an area of higher concentration to an area of lower concentration.'

Which process is being described?

- A a liquid being frozen
- **B** a solid melting
- **C** a substance diffusing through a liquid
- **D** a substance diffusing through the air
- **2** A student mixes 25 cm³ samples of dilute hydrochloric acid with different volumes of aqueous sodium hydroxide.

In each case, the student measures the change in temperature to test if the reaction is exothermic.

Which piece of apparatus is not needed?

3 Information about the solubility of four solids, P, Q, R and S, is given in the table.

	Р	Q	R	S
solubility in water	dissolves	insoluble	insoluble	dissolves

A student attempted to separate mixtures of these solids using the following method.

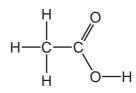
- 1 Add the mixture to a beaker of water and stir.
- 2 Filter the mixture.
- 3 Crystallise one of the solids from the filtrate.

Which of the following mixtures could not be separated by this method?

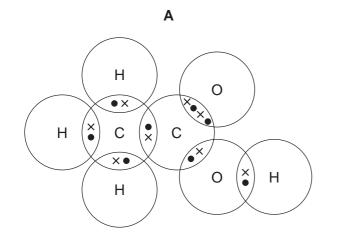
- A a mixture of P and R
- **B** a mixture of Q and P
- **C** a mixture of Q and R
- **D** a mixture of R and S
- 4 The table shows information about atoms of three different elements.

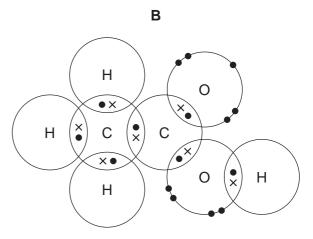
element	proton number	nucleon number	number of protons	number of neutrons	number of electrons
chlorine	17	35	17	W	17
chlorine	17	х	17	19	17
argon	Y	40	18	22	18
potassium	19	39	19	20	Z

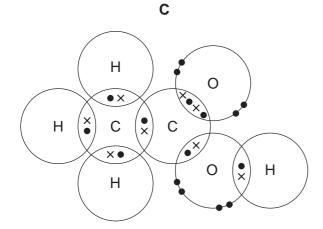
What are the values of W, X, Y and Z?

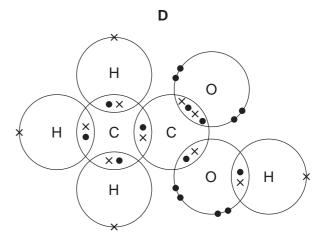

	W	Х	Y	Z
Α	18	35	18	19
в	18	36	18	19
С	19	35	19	18
D	19	36	19	18

5 Metal P reacts with non-metal Q to form a compound.

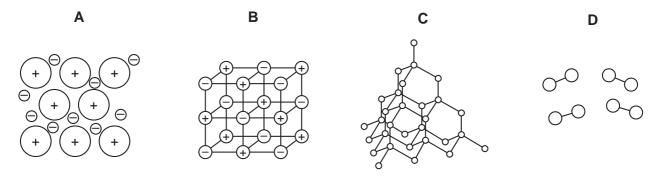

Which process takes place and which type of compound is formed?


	process	type of compound
Α	electrons are transferred from P to Q	covalent
в	electrons are transferred from P to Q	ionic
С	electrons are transferred from Q to P	covalent
D	electrons are transferred from Q to P	ionic


6 The structure of ethanoic acid is shown.



Which diagram shows the arrangement of outer shell electrons in a molecule of ethanoic acid?



7 X is a solid at room temperature.

X has a high melting point.

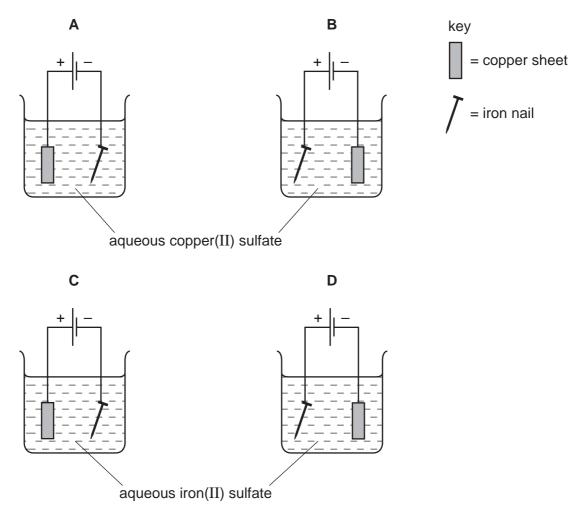
Solid X conducts electricity.

Which diagram shows how the particles are arranged in solid X?

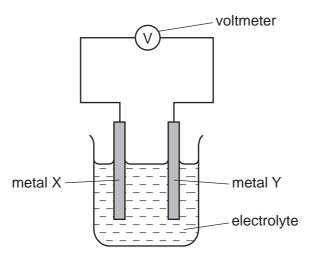
8 Benzene is a liquid with molecular formula C₆H₆.

Ethene is a gas with molecular formula C_2H_4 .

Which statement is correct?

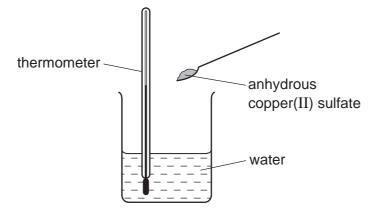

- A 1 mole of benzene and 1 mole of ethene contain the same number of atoms.
- **B** 1 mole of benzene and 1 mole of ethene both have a volume of 24 dm³ at room temperature and pressure.
- **C** Both benzene and ethene have the same empirical formula.
- **D** The number of carbon atoms in 0.5 moles of ethene is equal to the Avogadro constant.
- **9** Sodium hydrogencarbonate undergoes thermal decomposition as shown.

 $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$


What is the maximum mass of sodium carbonate that can be made from 0.100 moles of sodium hydrogencarbonate?

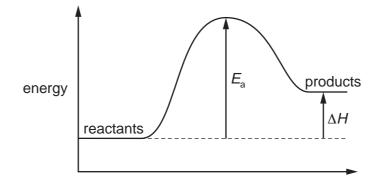
A 4.15g **B** 5.30g **C** 10.6g **D** 21.2g

10 Which apparatus could be used to electroplate an iron nail with copper?


11 The diagram shows a simple cell.

Which two metals produce the highest reading on the voltmeter?

	Х	Y
Α	magnesium	copper
в	magnesium	iron
С	zinc	copper
D	zinc	iron

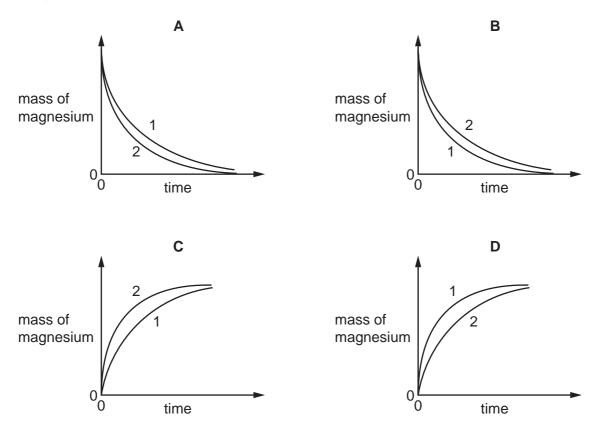

12 When anhydrous copper(II) sulfate is added to water a solution is formed and heat is given out.

Which row shows the temperature change and the type of reaction taking place?

	temperature change	type of reaction
Α	decrease	endothermic
в	decrease	exothermic
С	increase	endothermic
D	increase	exothermic

13 The energy level diagram for a reaction is shown.

Which statement is not correct for this energy level diagram?


- **A** It could be the energy level diagram for the reaction when petrol is burnt.
- **B** Less energy is released in bond forming than is needed for bond breaking.
- **C** The activation energy, E_a , has a positive value.
- **D** The energy change, ΔH , for the reaction is positive.

14 The rate of reaction between magnesium and excess dilute hydrochloric acid was followed by measuring the mass of magnesium present at regular time intervals.

Two experiments were performed.

Both experiments used 0.1g of magnesium ribbon. The acid in experiment 1 was less concentrated than in experiment 2.

Which graph shows the results of the experiments?

- 15 Which statement explains why coal dust forms an explosive mixture with air?
 - **A** Coal dust catalyses the explosion.
 - **B** Coal dust has a large surface area.
 - **C** Crushing coal increases the concentration of the coal.
 - **D** Crushing coal increases the temperature of the coal.

16 The following reversible reaction takes place in a closed vessel at constant temperature.

$$P(g) + Q(g) + R(g) \rightleftharpoons S(g) + T(g)$$

When the system has reached equilibrium, more T is added.

After the addition of T, which substances increase in concentration?

- A P, Q, R and S
- B P and Q only
- C P, Q and R only
- **D** S only
- 17 Four ionic half-equations are shown.
 - 1 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
 - $2 \quad 2I^{-}(aq) \rightarrow I_{2}(aq) + 2e^{-}$
 - 3 Fe²⁺(aq) \rightarrow Fe³⁺(aq) + e⁻
 - 4 $Cl_2(g)$ + $2e^- \rightarrow 2Cl^-(aq)$

Which statement is correct?

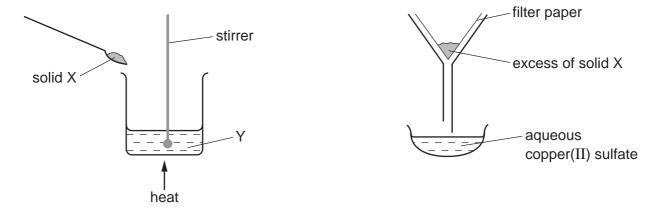
- A In equation 1, copper(II) ions are oxidised to copper.
- **B** In equation 2, iodide ions are reduced to iodine.
- **C** In equation 3, iron(II) ions are oxidised to iron(III) ions.
- **D** In equation 4, chlorine is oxidised to chloride ions.
- **18** Germanium oxide is a white powder.

Germanium oxide reacts with concentrated hydrochloric acid.

Germanium oxide reacts with concentrated aqueous sodium hydroxide.

Germanium oxide does not dissolve when added to water.

Which type of oxide is germanium oxide?


- **A** acidic
- B amphoteric
- C basic
- D neutral

19 Hydrogen chloride gas reacts with water to produce an acidic solution. The equation for the reaction is shown.

$$HCl + H_2O \rightarrow Cl^- + H_3O^+$$

Which statement describes what happens during the reaction?

- **A** The chloride ion is formed by accepting an electron from the water.
- **B** The hydrogen chloride loses an electron to form the chloride ion.
- **C** The water accepts a proton from the hydrogen chloride.
- **D** The water donates a proton to the hydrogen chloride.
- 20 The apparatus shown is used to prepare aqueous copper(II) sulfate.

What are X and Y?

	Х	Y
Α	copper	aqueous iron(II) sulfate
в	copper(II) chloride	sulfuric acid
С	copper(II) oxide	sulfuric acid
D	sulfur	aqueous copper(II) chloride

21 Information about some silver compounds is shown in the table.

compound	formula	solubility in water
silver carbonate	Ag ₂ CO ₃	insoluble
silver chloride	AgC1	insoluble
silver nitrate	AgNO ₃	soluble
silver oxide	Ag ₂ O	insoluble

Which equation shows a reaction which cannot be used to make a silver salt?

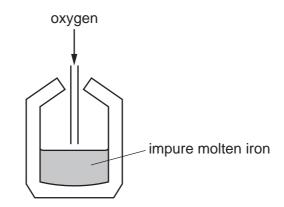
A AgNO₃(aq) + HCl(aq)
$$\rightarrow$$
 AgCl(s) + HNO₃(aq)

- $\textbf{B} \quad Ag_2O(s) \ + \ 2HNO_3(aq) \ \rightarrow \ 2AgNO_3(aq) \ + \ H_2O(l)$

22 What is **not** a property of Group I metals?

- **A** They are soft and can be cut with a knife.
- **B** They react when exposed to oxygen in the air.
- **C** They produce an acidic solution when they react with water.
- **D** They react rapidly with water producing hydrogen gas.

teet	substance				
test	Р	Q	R	S	
dilute hydrochloric acid added	gas given off which 'pops' with a lighted splint	gas given off which turns limewater milky	no reaction	no reaction	
dilute aqueous sodium hydroxide added and warmed gently	no reaction	no reaction	gas given off which turns damp, red litmus paper blue	no reaction	


23 Four substances, P, Q, R and S, are tested as shown.

What are P, Q, R and S?

	Р	Q	R	S
Α	Mg	Na ₂ CO ₃	NH₄C <i>l</i>	NaC1
в	Mg	NH₄C <i>l</i>	Na ₂ CO ₃	NaC <i>l</i>
С	Mg	Na ₂ CO ₃	NaC1	NH₄C <i>l</i>
D	Na ₂ CO ₃	Mg	NaC1	NH₄C <i>l</i>

- 24 Which statement about transition elements and their compounds is correct?
 - **A** All the transition elements have an oxidation state of +2 only.
 - **B** Aqueous solutions of the salts of transition elements are generally coloured.
 - **C** Transition elements change from metal to non-metal across the period.
 - **D** Transition elements can act as catalysts but their compounds cannot.

25 Impure iron from the blast furnace is converted to steel as shown.

Which statement about the process is correct?

- A Acidic oxides are added to remove alkaline impurities.
- **B** Coke is added as a reducing agent.
- **C** Oxygen is blown in to oxidise the impure iron.
- **D** The steel produced contains less carbon than the impure iron.
- **26** The ionic equations represent the reactions between four metals, P, Q, R and S, and solutions of the salts of the same metals.

P + Q²⁺
$$\rightarrow$$
 no reaction
R + P²⁺ \rightarrow R²⁺ + P
Q + S²⁺ \rightarrow Q²⁺ + S
S + P²⁺ \rightarrow S²⁺ + P
S + R²⁺ \rightarrow S²⁺ + R
S + Q²⁺ \rightarrow no reaction

What is the correct order of reactivity of the metals?

	most			least
Α	Р	R	S	Q
в	Q	R	S	Р
С	Q	S	R	Р
D	S	Q	Р	R

27 Aluminium is extracted by electrolysis.

From which ore is aluminium extracted and at which electrode is aluminium deposited during electrolysis?

	ore	electrode
Α	bauxite	negative
В	bauxite	positive
С	cryolite	negative
D	cryolite	positive

28 Zinc oxide can be reacted with carbon to produce zinc metal.

Which equation for this reaction is correct?

- $\textbf{A} \quad 2ZnO \ + \ C \ \rightarrow \ 2Zn \ + \ CO$
- $\textbf{B} \quad 2ZnO \ \textbf{+} \ 2C \ \rightarrow \ 2Zn \ \textbf{+} \ 2CO_2$
- $\textbf{C} \quad \text{ZnO} \ \textbf{+} \ \textbf{C} \ \rightarrow \ \textbf{Zn} \ \textbf{+} \ \textbf{CO}$
- $\textbf{D} \quad ZnO \ + \ 2C \ \rightarrow \ Zn \ + \ 2CO_2$
- 29 Air is a mixture of gases.

Which gas is present in the largest amount?

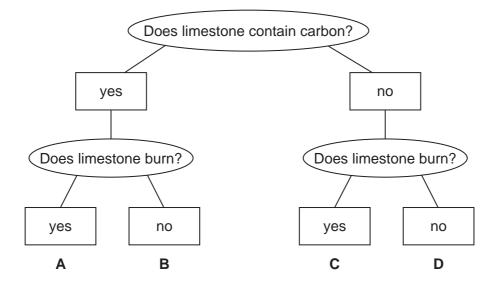
- A argon
- B carbon dioxide
- **C** nitrogen
- D oxygen
- **30** Which information about carbon dioxide and methane is correct?

		carbon dioxide	methane	
Α	formed when vegetation decomposes	\checkmark	x	key
в	greenhouse gas	\checkmark	1	✓ = true
С	present in unpolluted air	x	×	x = false
D	produced during respiration	×	\checkmark	

- 31 Underwater steel pipes can be protected from corrosion by attaching magnesium blocks to them. Which equation represents the reaction that prevents corrosion?
 - A Fe \rightarrow Fe²⁺ + 2e⁻
 - $\textbf{B} \quad \text{Fe}^{2^+} \rightarrow \text{Fe}^{3^+} + \text{e}^-$
 - $\textbf{C} \quad \text{Mg} \ \rightarrow \ \text{Mg}^{2^{+}} \ + \ 2e^{-}$
 - **D** Mg^{2+} + $2e^- \rightarrow Mg$
- 32 Ammonia is manufactured by the Haber process. The reaction is exothermic.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H = -92 \text{ kJ/mol}$

Which statement about the Haber process is correct?


- **A** The reaction is irreversible and produces only one product.
- **B** The reaction is reversible and produces less ammonia at high pressure.
- **C** The reaction is reversible and produces less ammonia at high temperature.
- **D** The reaction is slow because a catalyst is not used in the Haber process.
- **33** Sulfuric acid is manufactured by the Contact process.

The most important reaction takes place in the presence of a catalyst.

What are the reactants and the catalyst for this reaction?

	reactants	catalyst
Α	sulfur and oxygen	vanadium(V) oxide
в	sulfur dioxide and oxygen	vanadium(V) oxide
С	sulfur dioxide and steam	iron
D	sulfur trioxide and water	platinum

34 Which box corresponds to limestone?

35 Petroleum is an important fossil fuel.

Which row correctly describes petroleum?

	type of substance	composition
Α	compound	mainly hydrocarbons
в	compound	only hydrogen and carbon
С	mixture	mainly hydrocarbons
D	mixture	only hydrogen and carbon

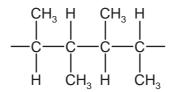
36 Butane reacts as shown.

butane catalyst and heat butene + hydrogen

What is this type of reaction?

- A combustion
- B cracking
- **C** polymerisation
- D reduction

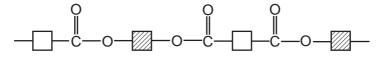
- 37 Substance Z has the following characteristics.
 - 1 It burns in an excess of oxygen to form carbon dioxide and water.
 - 2 It is oxidised by air to form a liquid smelling of vinegar.
 - 3 It reacts with carboxylic acids to form esters.

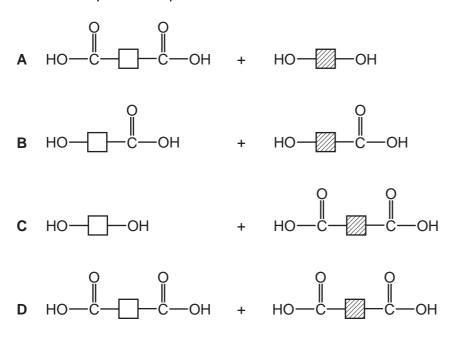

What is substance Z?

- A ethane
- B ethanoic acid
- C ethanol
- D ethyl ethanoate
- **38** Ethanol is manufactured by the catalytic addition of steam to ethene and by fermentation.

Which row shows an advantage and a disadvantage of using the catalytic addition of steam to ethene compared to fermentation?

	advantage	disadvantage
Α	fast	the product is impure
в	fast	uses non-renewable materials
С	the product is pure	slow
D	uses renewable materials	slow


39 The partial structure of addition polymer X is shown.


Which monomer is used to form polymer X?

- **A** $CH_2=CH_2$
- B CH₃CH=CH₂
- C CH₃CH=CHCH₃
- D CH₃CH₂CH=CH₂

40 The diagram shows the partial structure of *Terylene*.

From which pair of compounds is it made?

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

	VIII	2	Не	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Кr	krypton 84	54	Xe	xenon 131	86	Rn	radon -				
	۸II				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine -				-
	N				8	0	oxygen 16	16	ი	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	L<	livermorium -	
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209				
	2				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium -	
	≡				5	ш	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	L1	thallium 204				
											30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	C	copernicium -	
											29	Cu	copper 64	47	Ag	silver 108	79	ΡN	gold 197	111	Rg	roentgenium -	
Group											28	ïZ	nickel 59	46	Ъd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium -	
Gro											27	ပိ	cobalt 59	45	Rh	rhodium 1 03	77	Ir	iridium 192	109	Mt	meitnerium -	
		- :	T	hydrogen 1							26	Бе	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium -	
											25	Mn	manganese 55	43	ЦС	technetium -	75	Re	rhenium 186	107	Bh	bohrium	
						bol	ISS				24	ŗ	chromium 52	42	Mo	molybdenum 96	74	×	tungsten 184	106	Sg	seaborgium -	
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Db	dubnium —	
						ato	rels				22	F	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	Rf	rutherfordium –	
											21	လိ	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ba	barium 137	88	Ra	radium -	
	_				e	:	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ľ	francium -	

IanthanoidsLaCePrNdPmSmEuGdTbDyHoErTmYbIanthanumceriumpasedyniumneodyniumneodyniumsendiumteruiumdsprosiumhomiumeriumYaIanthanumceriumpasedyniumneodyniumneodyniumsendiumeriumgadoinumeriumdsprosiumhomiumeriumYaIanthanumceriumpasedyniumneodyniumneodyniumsendiumeriumgadoinumeriumdsprosiumhomiumeriumyaebumIanthanumpase<		57	58	59	60	61	62	63	64	65	99	67	68	69	70	71
certumpreseodymiumneodymiumpromethiumsamatiumeuropiumgadofiniumterbiumdyspresiumhomiumethiumterbium140141144-1501571591531651671699091929394959697989999100101140NpPuAmCmBkCfEs170101109232231238	lanthanoids	La		Pr		Pm	Sm	Еu	Gd	Тb	DV	Ч	ц	Tm	γb	Lu
90 91 92 93 94 95 96 97 98 99 100 101 Th Pa U Np Pu Am Cm BK Cf Es Fm Md thorium protactinium uranium nepunium putonium americium bekkelum californium insteleinium insteleinium mendelevium 232 233 234 2 - <t< td=""><td></td><td>lanthanum 139</td><td></td><td>praseodymium 141</td><td></td><td>promethium -</td><td>samarium 150</td><td>europium 152</td><td>gadolinium 157</td><td>terbium 159</td><td>dysprosium 163</td><td>holmium 165</td><td>erbium 167</td><td>thulium 169</td><td>ytterbium 173</td><td>Iutetium 175</td></t<>		lanthanum 139		praseodymium 141		promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	Iutetium 175
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md 1 1 232 231 238 -<		89		91		93	94	95	96	97	86	66	100	101	102	103
thorium protactinium uranium neptunium plutonium americium curium berkellum californium einsteinium fermium mendelevium 232 231 238	actinoids	Ac	Th	Ра	⊃	dN	Pu	Am	СЗ	Ŗ	Ç	Еs	Е'n	Md	No	Ļ
232 231 238		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
		I	232	231	238	I	I	I	I	I	I	I	I	I	I	I

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.)

The Periodic Table of Elements

20