

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CHEMISTRY

0620/42 October/November 2016

Paper 4 Extended Theory MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0620	42

Question			Answe	er		Mark
1(a)	fixed volu	me AND take the shape of	the container			1
1(b)					_	6
	solid	touching	regular	vibrate		
	liquid					
	gas	not touching	random	random		
	· · · · ·		·	·	-	
1(c)(i)	melting					1
1(c)(ii)	sublimatic	'n				1

Question	Answer	Mark
2(a)	(total) number of protons and neutrons in a nucleus (of an atom)	2
2(b)	Na 2:8:1 P ³⁻ 2:8:8	2
2(c)	radiotherapy OR treatment of cancer	1
2(d)	<u>average</u> mass of (naturally occurring) <u>atom(s)</u> (of an element) (compared to an atom of) ^{12}C	2

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0620	42

Question	Answer	Mark
2(e)	chlorine must have more than one isotope the masses of these isotopes/(any given) mass numbers are averaged	2
2(f)	lattice of labelled At^{3+} ions electrons seen on the diagram between the ions attraction between (positive) ions and (sea of/delocalised) electrons	3

Question	Answer	Mark
3(a)	nitrogen (78%) AND oxygen (21%) noble gases OR argon (1%)	2
3(b)	nitrogen AND oxygen (from the air) react (in the) high temperatures of a car engine NO _x /oxides of nitrogen react with or dissolve in water (to form an acid)	3
3(c)	any 2 from: (named) ruminant animal/cattle/(anaerobic) digestion/flatulence (in animals) /animal waste/(animal) dung decomposing vegetation/animals/organisms/decaying (organic) matter/ (fractional distillation/cracking of) petroleum/crude oil/hydrocarbons/natural gas/coal/	2
3(d)	photosynthesis	1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0620	42

Question	Answer	Mark
4(a)	<pre>copper(II) carbonate fizzes/bubbles/effervescence dissolves/disappears copper(II) oxide dissolves/disappears blue (solution formed)</pre>	2
4(b)(i)	Cu(NO ₃) ₂ <u>3</u> Cu AND <u>3</u> Cu(NO ₃) ₂	2
4(b)(ii)	hydrogen (gas) is not produced (when copper reacts with nitric acid)	1

Question	Answer	Mark
5(a)	20 cm ³ M1 M_r of MnO ₂ : 87 M2 moles of MnO ₂ used: $3.48/87 = 0.04$ M3 moles of HC <i>l</i> needed: $0.04 \times 4 = 0.16$ M4 volume of HC <i>l</i> needed: $(0.16/8.0) \times 1000$ AND 20 cm^3	4
5(b)(i)	from colourless to yellow/orange/brown	2
5(b)(ii)	$Cl_2(g) + 2Br^{-}(aq) \rightarrow Br_2(aq) + 2Cl^{-}(aq)$ M1 (aq) as state symbols for the two products given M2 correct products M3 balancing	3

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0620	42

Question	Answer	Mark
5(c)(i)	the (C=C) double bond	1
5(c)(ii)	addition OR bromination	1
5(d)(i)	substitution	1
5(d)(ii)	(compounds with the) same molecular formula different structural formulae or structures	2
5(d)(iii)	structure of 1–chloropropane structure of 2–chloropropane	2
5(e)(i)	I ₂ O ₅ M1 76.0/127 AND 24.0/16.0 M2 0.59 AND 1.5 OR 1 AND 2.5 M3 I ₂ O ₅	3
5(e)(ii)	(turns) red/pink/orange/yellow iodine is a non-metal	2

Question	Answer	Mark
6(a)	bauxite/Alumina is dissolved in <u>molten</u> cryolite cryolite lowers the melting temperature molten aluminium forms anode reaction: $2O^{2-} \rightarrow O_2 + 4e^-$ cathode reaction: $Al^{3+} + 3e^- \rightarrow Al$	5

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0620	42

Question	Answer	Mark
6(b)	carbon or graphite	2
	electrode reacts with oxygen/burns (in oxygen) / combusts	
6(c)	use 1: manufacture of aircraft reason 1: low density use 2: food containers OR cooking foil reason 2: Al resistant to corrosion	4

Question	Answer	Mark
7(a)	large/big molecule made from (many) monomers (joined together)	2
7(b)(i)	hydrolysis	1
7(b)(ii)	acid (conditions)/enzyme	1
7(c)(i)	distance moved by substance distance moved by solvent (front)	1
7(c)(ii)	circle around top spot	1
7(c)(iii)	mixture of amino acids is placed as a spot onto a (pencil) baseline placed into a (suitable) solvent/water a locating agent is added to the (finished) chromatogram (to reveal spots)	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0620	42

Question	Answer	Mark
7(d)	fully displayed amide link between any two 'blocks' dipeptide 1: amino acid A on left-hand side and amino acid B on right-hand side AND dipeptide 2: amino acid B on left-hand side and amino acid A on right-hand side correct terminal amine and carboxylic acid group on both correct dipeptides	3