MARK SCHEME for the October/November 2014 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		Mark Scheme Syllabus			
		Cambridge IGCSE – October/November 2014	0620	Paper 33	
1	(a)	 Bromine Physical: reddish-brown liquid or brown liquid or volatile liquid/low boiling point liquid or poor/non-conductor (of electricity) or soluble in water or soluble in organic/non-polar solvents Chemical: Reacts with water or reacts with iodides (in solution) or displaces iodine or reacts with alkenes/named alkene/unsaturated hydrocarbons or reacts with alkane in UV/named alkane in UV or valency/oxidation state(-)1 or forms Br⁻ or gains or shares 1 electron or combines or reacts with metals/named metal or combines or reacts with non-metals/named non-metal or oxidising agent or bleaches litmus paper/indicator paper or corrosive or forms acidic oxides 			
	(b)	(b) <u>Graphite</u> Physical: (good) conductor (of electricity) or soft or lubricant or high melting point/high boiling point or grey black or black solid or slippery or greasy (to touch) or brittle/breaks when subjected to stress or insoluble in water			
		Chemical: reducing agent or reduces metal oxides/named metal oxide with/burns in air/oxygen or forms an acidic oxide (CO ₂) or valency/oxida of 2 or 4		[1]	
	(c)	c) <u>Manganese</u> Physical: (good) conductor (of heat/electricity) or high melting point/high boiling point or forms coloured compounds/coloured ions or hard or strong or high density or malleable or ductile or sonorous or shiny			
		Chemical: Variable or different valency/oxidation state/oxidation number or catalytic activity or forms coloured compounds/coloured ions or forms complex ions/complexes or reacts with acids or reducing agent or reacts with non-metals			
				[Total: 6]	
2	(a)	(i) $(X(s) \leftrightarrow) X(l)$		[1]	
		(ii) melting point/freezing point (of X)		[1]	
	(iii) gas/gaseous or vapour		[1]	
	(iv) not horizontal or line slopes or line is lower		[1]	

Page	3	Mark Scheme Syl		Paper
		Cambridge IGCSE – October/November 2014	0620	33
(b)	(i)	14.3		[1]
	(ii)	85.7 ÷ 12 and 14.3 ÷ 1 or 7.14 and 14.3 ratio 1:2 CH ₂ note: Award all 3 marks for correct answer allow: alternative working e.g. 85.7 × 84 ÷ 100 and 14.3 × 84 ÷ 100 or 71.988/72 and 12/12.012		[1] [1] [1]
		6:12 or ratio 1:2 CH ₂		[1] [1]
	(iii)	C ₆ H ₁₂		[1]
				[Total: 9]
3 (a)	(i)	3		[1]
	(ii)	70		[1]
(b)	Ado	d octane (or other liquid hydrocarbon) (to soot)		[1]
	CO	ND(on addition of any solvent) filter (to remove insoluble forms of ca	arbon)	[1]
	(all	ow to) evaporate or heat or warm or leave in sun(to get crystals of f	ullerene)	[1]
(c)	(i)	graphite		[1]
	(ii)	delocalised electrons/free electrons/sea of electrons		[1]
		COND (on electrons) move/mobile/electrons flow		[1]
	(iii)	Any two from: potassium oxide potassium hydroxide potassium carbonate potassium hydrogencarbonate (bicarbonate)		[2]
				[Total: 10]
4 (a)	car	bon dioxide/CO ₂		[1]
(b)	2H ₂	$_2$ + O ₂ \rightarrow 2H ₂ O		[1]
(c)	(i)	anode/negative electrode and electrons lost(by hydrogen/H/H $_2$)/elemove from this electrode	ectrons	[1]
	(ii)	$\begin{array}{l} H_2 \rightarrow 2H^{*} + 2e() \ / \ H_2 - 2e() \rightarrow 2H^{*} \ / \ H_2 + 2OH^{-} \rightarrow 2H_2O + 2e() \ / \ H_2 + 2OH^{-} - 2e() \rightarrow 2H_2O \end{array}$ Species (1) Balancing (1)		[2]

Page 4	4		Mark Scheme Syllab		Paper
		Cambrid	ge IGCSE – October/November 2014 0620		33
(d)	(d) Any two from: CELL: SUSTAINABILITY: POLLUTION: POLLUTANTS:		lightweight quieter fewer working parts/less maintenance more efficient or less energy wasted or more energy produced conserves a limited resource/petroleum/fossil fuels unlimited supplies of renewable resource(of hydrogen from water) <u>No or less</u> greenhouse effect <u>No or less</u> acid rain <u>No or less</u> toxic gases <u>No or less</u> toxic gases <u>No or less</u> Smog <u>No or less</u> C/soot <u>No or less</u> CO <u>No or less</u> SO ₂ <u>No or less</u> SO ₂ <u>No or less</u> oxides of nitrogen/NO/NO ₂ /N ₂ O ₄ /NO _x		
			<u>No or less</u> (unburnt) hydrocarbons <u>No or less low level</u> ozone		
			H ₂ O is the <u>only</u> product		[2]
					[Total: 7]
5 (a)	(i)	rate decreases			[1]
		concentration of s	sodium chlorate ((I))/reactant decreases		[1]
	(ii)	(initial) gradient g same final volum	reater/steeper (must start at origin) e of oxygen		[1] [1]
	(iii)	v i <i>i</i>	chemical reaction/(to prevent)reaction catalysed by down or decomposes sodium chlorate((I))		[1]
	(iv)	particles have mo	pre energy/particles move faster/		[1]
	more collisions		equent or more often/greater chance of collision/collision		[1]
			ore particles have energy to react/more collisions are		[1]
(b)	(i)	$2CT \rightarrow Cl_2 + 2$	$e() / 2Cl - 2e() \rightarrow Cl_2$		[1]
		$2H^{+}$ + $2e(^{-}) \rightarrow$	H_2 / $2H^+ \rightarrow H_2 - 2e()$		[1]
		hydrogen formed	at cathode/- and chlorine at anode/+		[1]
		<u>Na[⁺] and OH</u> ⁻ or s sodium hydroxide	odium <u>ions</u> and hydroxide <u>ions</u> left in solution/form/becom	e	[1]
	(ii)	Cl ₂ + 2NaOH – Species (1) Balar	→ NaClO/NaOCl + NaCl + H₂O ncing (1)		[2]
					[Total: 14]

Pa	age :	5	Mark Scheme Sylla		Paper
			Cambridge IGCSE – October/November 2014 062	20	33
6	(a)	Rb	loses 1 electron/1 electron in outer shell/1 valency or valence electron		[1]
		Sr	loses 2 electrons/2 electrons in outer shell/2 valency or valence electrons		[1]
	(b)	(i)	(mix solutions of) rubidium carbonate/Rb ₂ CO ₃		[1]
			strontium chloride/SrC <i>l</i> ₂ or strontium nitrate/Sr(NO ₃) ₂ or strontium sulfate/SrSO ₄ or strontium hydroxide/Sr(OH) ₂		[1]
			COND (on two correct reactants) filter or centrifuge or decant (the residue)		[1]
			wash <u>with water</u> and dry/press between filter paper/put in (low) oven/put (sunny) windowsill/put in sun/heat	on a	[1]
		(ii)	$SrCO_3 \rightarrow SrO + CO_2$		[1]
	(c)	(i)	rubidium nitr <u>ite</u> or nitr <u>ate(III)</u>		[1]
	()	(ii)	$2Sr(NO_3)_2 \rightarrow 2SrO + 4NO_2 + O_2$		[2]
		()	Species (1) Balancing (1)		
					[Total: 10]
7	(a)	(i)	butanoic acid/butyric acid		[1]
			displayed formula below		[2]
			$H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H$ $H \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{H}$ $H \xrightarrow{H} H \xrightarrow{H} H$ (1) (1)		
		(ii)	any three from: same or similar chemical properties (same) general (molecular) formula (consecutive members) differ by CH ₂ same functional group common methods of preparation physical properties vary in predictable manner/show trends/gradually char or example of a physical property variation i.e. melting point/boiling point/volatility	ange	[3]
		(iii)	dissociates/ionises/splits up (into ions)		[1]
			partially/incompletely/slightly/not fully		[1]
			(donates) protons/(forms) H^+/H_3O^+ (as the only positive ion)		[1]
			© Cambridge International Examinations 2014		

Page 6		Mark Scheme Syllabus		Paper
		Cambridge IGCSE – October/November 2014	0620	33
(b)	(i)	methyl propanoate		[1]
		$CH_3CH_2COOCH_3/CH_3CH_2CO_2CH_3/C_2H_5COOCH_3/C_2H_5CO_2CH_3$		[1]
	(ii)	methyl ethanoate		[1]
(c)	(i)	$3C_4H_{10}$ + 5 $\frac{1}{2}O_2 \rightarrow 4C_2H_5COOH$ + 3 H_2O		[1]
	(ii)	propanol or propan-1-ol or propanal		[1]
				[Total: 14]
8 (a)	(ch	anges from) blue (1) to pink (1)		[2]
(b)		more (solid) dissolves or no more cobalt(II) carbonate dissolves or ervescence or bubbling or fizzing	no more	[1]
	filte	er(residue)/centrifuge/decant		[1]
	gor	aporate/heat/warm/boil/leave in sun AND until most of the water has ne/some water is left/until it is concentrated/saturation (point)/crystall nt/crystals form on glass rod or microscope slide/crystals start to for	lisation	[1]
	wa	ave/allow to cool/allow to crystallise/filter (off crystals)/wash(with dist ter)/dry crystals with filter paper/dry crystals in warm place or dry in on windowsill		[1]
(c)	nur	mber of moles of HCl in 50 cm ³ of acid, concentration 2.2 mol/dm ³ =	0.11	[1]
	ma	ximum number of moles of $CoCl_2.6H_2O$ which could be formed = 0.0)55	[1]
	ma	ss of 1 mole of $CoCl_2.6H_2O = 238 g$		
	ma	ximum yield of $CoCl_2.6H_2O = 13.09g$		[1]
	per <u>dp</u>	centage yield = 48.2% or ecf mass of $CoCl_2.6H_2O$ above/13.09 × 1	00% to <u>1</u>	[1]
				[Total: 10]