MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme Syllabus		Paper
				IGCSE – May/June 2014	0620	32
1	(a)	A a	nd E	need both (1)		[1]
	(b)	D (′	1)			[1]
	(c)	C (′	1)			[1]
	(d)	B (1)			[1]
	(e)	F (1)			[1]
	(f)	E (1)			[1]
	(g)	C (′	1)			[1]
						[Total: 7]
2	(a)	(i)		stance/material/compound/element/mixture (burn r <u>gy or heat</u> (1)	t) to <u>produce/release</u>	<u>e</u> [1]
		(ii)		two from: coal coke peat petroleum/ crude oil refinery gas/LPG gasoline/petrol naptha kerosene/paraffin diesel (oil)/gas oil fuel oil propane butane		[2]
		(iii)		d/charcoal/animal dung/biomass/Uranium/U/plu	tonium/Pu (1)	[4]
	,	,		a, enalesar, annal aang, biomaoo, oramani, o' pia		[']

Page 3			6	Mark Scheme Syllabus		
¥				IGCSE – May/June 2014	0620	Paper 32
	(b)	(i)	-	two from: water/steam/water vapour/H ₂ O (1) carbon dioxide/CO ₂ (1) carbon monoxide/CO (1)		[2]
		(ii)	any	two from:		
			limite	ed or finite resource/non-renewable/will run out/de	epleted (1)	
			gree	nhouse effect/gas(es)/climate change/(cause) glc	bal warming (1)	
			acid	rain (1)		
			prod	uction of <u>poisonous/toxic</u> gases (1)		[2]
						[Total: 8]
3	(a)	(i)	pres	sure 150–300 atmospheres/atm (1)		
			temp	perature accept in range 370 to 470 <u>°C</u> (1)		
			iron	(catalyst) (1)		
			bala	nced equation $N_2 + 3H_2 \Rightarrow 2NH_3$ (1)		
			equi	librium/reversible (1)		[5]
		(ii)	pota	ssium/K (1)		
			phos	sphorus/P (1)		[2]
	(b)	(i)		fossil fuels/burn fuels containing sulfur/burn co n/burn ores containing sulfur/roast metal sulfides		
			sulfu	$r dioxide/SO_2$ (formed) (1)		
			(forn	n) sulfuric/H ₂ SO ₄ /sulfurous acid/H ₂ SO ₃ (1)		
			OR			
				gen and oxygen (in air) react at high temperature nes/lightning. (1)	es/in jet engines/c	ar
			(forn	n) oxides of nitrogen (1)		
			(forn	n) nitric acid/HNO $_3$ /nitrous acid/HNO $_2$ (1)		[3]

Page 4		Mark Scheme Syllabus		Paper	
		IGCSE – May/June 2014	0620	32	
(ii)	any two from: calcium oxide/lime/quicklime/CaO (1) calcium hydroxide/Ca(OH) ₂ /lime/slaked lime/limewater (1) calcium carbonate/CaCO ₃ /limestone/chalk/marble (1) guidance: 'lime' can only be credited once.				
(a) (i)	butano	oic/butyric acid (1)			
	CH₃CI	$H_2CH_2COOH/C_2H_5CH_2COOH$ (1)		[2]	
(ii)	any th	nree from:			
	(same	e) general formula (1)			
	(conse	ecutive members) differ by CH_2 (1)			
	same	functional group (1)			
	comm	on methods of preparation (1)			
	chang	ample of a physical property variation i.e. melti	-	-	
(b) (i)	displa	yed formula of propan-1-ol, all bonds shown sep	arately (1)	[1]	
(ii)	acidifi	ed (1)			
		sium manganate <u>(VII)</u> /potassium permanganate omate(VI)/K ₂ Cr ₂ O ₇ /potassium dichromate (1)	/KMnO ₄ or potassiu	m [2]	
(c) (i)	zinc +	+ propanoic acid $\rightarrow \underline{zinc \ propanoate}$ (+ hydroge	en) (1)	[1]	
(ii)	calciu	m oxide + propanoic acid \rightarrow <u>calcium propanoa</u>	<u>te + water</u> (1)	[1]	
(iii)	(iii) LiOH + CH ₃ CH ₂ COOH \rightarrow <u>CH₃CH₂COOLi + H₂O</u> (1)				
(d) (i)	(d) (i) <u>concentration</u> (of acid in C) is less/halved or concentration <u>of A</u> is more doubled. (1)				
	less c	ollisions or more collisions <u>in A</u> (than in C) (1)		[2]	
(ii)	(ii) (higher temperature in B particles/molecules/atoms) move faster/have more energy/more have E _a or (particles/molecules/atoms) <u>in A</u> move slower/have less energy/less have E _a (1)				
	more	collisions or less collisions <u>in A</u> (than in B) (1)		[2]	

Page 5		age 5		Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2014	0620	32
	 (iii) It (D) has strong (acid) and A has weak acid/(D) stronger/(D) ionises more/(D) dissociates more or <u>A</u> is weaker/<u>A</u> ionises less/<u>A</u> dissociates less (1) It (D) has higher concentration of hydrogen ions or <u>A</u> has a lower concentration of hydrogen ions (1) 					
			<u>conc</u>	centration of hydrogen ions (1)		
			more	e collisions (in D) or fewer collisions $in A$ (1)		[3]
						[Total: 18]
5	(a)	(i)	inco (1)	mplete combustion or limited oxygen/less oxyger	n/not enough oxygen	[1]
		(ii)	any	two from:		
			(forw	vard) reaction is endothermic (1)		
	high temperature increases yield/favours forward reaction/shifts equilibrium to right (1)					
			faste	er reaction (rate) (1)		[2]
	((iii)	any	two from:		
			high	pressure reduces yield or favours LHS (1)		
				ause LHS has smaller volume or number of moles <i>l</i> as) ORA (1)	number of molecules	
			(high	n pressure plant is) expensive/dangerous/explosion	n/leaks	[2]
5	(b)	hyd	Iroger	and chlorine / H ₂ and C l_2 (1)		
		soc	lium h	ydroxide/NaOH/Na ⁺ OH⁻(1)		
		2H	⁺ + 2e	$\rightarrow \ H_2/2H^{\scriptscriptstyle +} \rightarrow \ H_2 \ -2e \ \ (1)$		
		2C	$l^- \rightarrow 0$	$Cl_2 + 2e/2Cl^ 2e \rightarrow Cl_2$ (1)		
		Hyd	droge	$n/H_2/H/H^+$ at cathode and chlorine/chloride/C l_2/C	Cl/Cl⁻ at anode (1)	[5]
5	(c)	<u>ea</u>	<u>ch</u> chl	orine 1 bond pair and 3 non-bond pair (1)		
		оху	gen a	tom 2 non-bond pairs and 2 bond pairs as double b	oond (1)	
		car	bon a	tom 4 bond pairs including 2 bond pairs as double t	bond (1)	[3]
						[Total: 13]

	Page 6				Paper 32	
		IGCSE – May/June 2014 0620				
6	(a)	any thre (it would number (ation state/oxidatior	l		
		(metal/e				
		coloured compounds/ions/solutions (1)				
		<u>form</u> cor				
		(element	/compound act as) catalyst (1)		[3]	
	(b)	ScF ₃ (1)				
		correct c	harges on <u>both</u> ions (1)			
		8 electro	ns around (each) fluoride (1)		[3]	
	(c)	name or	formula of strong acid and alkali (1)			
		<u>reacts wi</u>	amphoteric) (1)			
		it dissolv	es/soluble in both(acid and alkali) or form solutions	in both (1)	[3]	
					[Total: 9]	
7	(a)		vithout indicator/repeat using same volumes of a charcoal to remove indicator (1)	cid and alkali or use	9	
		evaporat	e/heat/warm/boil/leave in sun (1)			
			ost of the water has gone/some water is le ation point (1)	ft/saturation (point)	1	
		leave/allow to cool/allow to crystallise (1)				
		filter (off crystals)/wash(with distilled water)/dry crystals with filter paper/dry crystals in warm place/oven/windowsill (1)				
	(b)	<u>0.062</u> (1)			
		0.031 (1)			
		3.97g (1))			
		55.4% (1)		[4]	

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0620	32

- (c) (i) (to prove) <u>all</u> water driven off or evaporated or boiled/no water remains/to make salt anhydrous (1)
 - (ii) $m_1 m_2$ = mass of water (1)

(calculate) moles of water AND moles of hydrated or anhydrous salt (1)

1:1 ratio/should be equal (1)

[3]