MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2013	0620	33
1	(a) (i)	by cl	<i>nent</i> not be broken into anything simpler hemical means made up of one type of atom only		[1] [1] [2]
	(ii)	two	<i>pound</i> or more different elements nically bonded together		[1] [1]
	(iii)	<i>mixt</i> two (<i>ure</i> or more substances not chemically joined together		[1]
	(b) (i)	mixt	ure		[1]
	(ii)	com	pound		[1]
	(iii)	elem	nent		[1]
	(c) cor	nductiv	vity (of heat or electricity)		[1] [Total: 9]
2	(a) (i)	large	e / high surface area		[1]
		(betv	collision rate / collide more / many collisions ween oxygen molecules and aluminium atoms) faster collisions		[1]
	(ii)		centration actants decreases		[1] [1]
		allov	v one mark ONLY for:		

for reactants used up **or** amount of reactant decreases

(iii) any three of four from one strand:

M1	increase in temperature			
M2	molecules move faster or particles have more energy			
М3	higher collision rate			
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> _a		

[3]

(b) (i) flour or wood dust or coal dust or carbon or sugar

[1]

	Page		6	Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2013	0620	33	
		(ii)	powe suita suita resu	three from: der and larger pieces / different sized particles use able named solid, e.g. magnesium able named solution, e.g. named acid or copper su able named solution, e.g. named acid or copper su able named solution, e.g. named acid or copper su able named solution, e.g. named acid or copper su ble named solution, e.g. named acid or copper su able named solution, e.g. named acid or copper su ble named solution, e.g. named acid or copper su able named solution, e.g. nable named solution, e.g. named solution, e.g. nam		[3]	
3	(a)	(i)	cars	s, ships, bridges, construction, white goods, screws	s, nails, roofing, fen	cing, etc. [1]	
		(ii)	-	stainless steel king utensils, surgical equipment, sinks or main us	е	[1] [1]	
	(b)			oxygen NOT air lioxide <u>and</u> sulfur dioxide (escape as gases)		[1] [1]	
		ado	l calci	n reaction with air / oxygen ium oxide / quicklime calcium carbonate, limestone		[1]	
		pho rea	ospho cts (w	orus oxide or silicon oxide (are acidic) vith calcium oxide / CaCO₃) slag / calcium silicate		[1] [1]	
4	(a)	(i)	any	ambiguous formula, e.g. GeH_3 - GeH_2 - GeH_3		[1]	
		(ii)		H₂n+₂ ſ C instead of Ge		[1]	
	(b)	CO	ND 4	ormula bps around germanium atom nbps and 1bp around each chlorine atom		[1] [1]	
	(c)	two		gen atoms around each germanium atom nanium atoms around each oxygen atom ral		[1] [1] [1]	
	(d)	СО		n ncrease in oxidation number F: electron loss		[1] [1]	

Page 4		4	Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2013	0620	33
5	(a) (i)		Group 1 metal CEPT: lithium		[1]
	(ii)	PbO	$(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ [1] ND balancing [1]		[2]
	(iii)	more	metal in a (i) is more reactive than lead e reactive metals have more stable compounds has stronger (ionic) bonding		[1]
	(b) (i)	spee	ed / rate of forward reaction = speed / rate of back macroscopic properties do not change / constant (v		[1]
	(ii)	CON	s darker OR goes brown ND lower pressure favours side with more moles ND this is NO ₂ side OR reactant side OR goes left		[1] [1] [1]
	(iii)	exot	hermic		[1]
			temperatures favour the exothermic reaction or temperatures moves equilibrium to right / product s	side / towards N_2O_4	[1]
	(iv)	forwa	ard reaction is bond forming		[1]
6	(a) (i)	pure	sure melting point NOT just sample would melt at 135 °C impure would melt lower than 135 °C	heating	[1] [1]
	(ii)	C₃H₄	₄ O ₄		[1]
	(iii)	etha	${}_{4}O_{2}$ OR CH $_{3}$ COOH noic OR acetic acid marks are independent of each other		[1] [1]
	(iv)	este	r NOT orga	anic, covalent	[1]
	(b) (i)	OR s	onic is a weaker acid/less dissociated sulfuric acid is a stronger acid/more dissociated r sulfuric acid is a strong acid		[1]

Page 5			Syllabus	Paper	
		IGCSE – May/June 2013	0620	33	
(ii)	add	piece of suitable metal, e.g. Mg ALLOW A <i>l</i> , Ca NO	T K, Na, Cu	[1]	
	sulfu	uric acid reacts fast er OR malonic reacts slow er		[1]	
	OR				
	as a	bove add a piece of CaCO ₃ , if soluble carbonate the	en [1] only		
		measure electrical conductivity uric acid is the bett er conductor		[1]	
		malonic acid poor er conductor		[1]	
	NOT	sulfuric acid is a good conductor			
(c) (i)	sodi	um malonate <u>and</u> water		[1]	
(ii)	CuS H₂C			[2]	
(!!!)				[2]	
(iii)	H_2	(COO) ₂ Mg		[2]	
(iv)	K ₂ S0	O ₄			
	CO ₂	and H ₂ O NOT H ₂ CC	D ₃	[2]	
				[Total: 16]	
7 (a) (i)	a co	mpound which contains carbon and hydrogen only		[1]	
(ii)		nes contain only C-C single bonds			
(")	or th	ney are saturated (hydrocarbons)			
	or h	ave the general formula C_nH_{2n+2}		[1]	
		nes contain at least one C=C double bond ney are unsaturated (hydrocarbons)			
		ave the general formula C_nH_{2n}		[1]	
(b) C ₂₀	H ₄₂ –	$\rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$		[1]	
(c) (i)	anv	unambiguous structure of BrCH ₂ CH ₂ Br		[1]	
	-	Γ just $C_2H_4Br_2$			
(ii)		-CH=CH-CH₃ any butene [1] only		[2]	
(iii)		$_{3}$ -CH ₂ -CH=CH ₂) + H ₂ O [1] \rightarrow CH ₃ -CH ₂ -CH ₂ -CH ₂ OF	4 [1]	[2]	
()	ÂLL	OW CH ₃ -CHOH-CH ₂ -CH ₃		[~]	
		ne reacts with water/steam (to form butanol) ONLY	[1]		
(iv)		$_{12} + H_2 \rightarrow C_6 H_{14}$ nes react with hydrogen [1] ONLY		[2]	
(d) vol				[1]	
	(d) volume of oxygen used = 150cm^3				

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	33
any	of carbon dioxide formed = 100 cm^3 equation of the combustion of an alkene $_{3}H_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$		[1]
formula			[1] [1]