MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme Syllabus						5	Paper			
						IC	SCSE ·	– May/.	June 2	2013		0620		31
1	(a)				ns car only /	bon ar just	ıd hydı	rogen						[1] [1]
		• • •			ent) bo separ	oiling p ate	oints							[1] [1]
	(b)	bitumen-making roads / roofs / water-proofing, etc.								[1]				
						on – wa g frictic		vaselin	e / grea	ase, etc. c	or mach	inery exampl	e, e.g	. (oil a) bike / [1]
		paraf	fin f	fra	ction ·	– jet fu	el / (ho	ome) he	eating o	or tractors	or cool	king or lightin	ıg	[1]
		gasol	line	e fra	action	– petr	ol or fu	iel for c	ars / v	ans / trucł	ks			[1]
														[Total: 8]
2	(a)	3 or I	11											[1]
	(b)	good	cor	ondu	uctor	and it i	s a me	etal/has	deloca	alised (fre	e) elect	rons		[1]
	(c)	N or acce			∖s or	Sb								[1]
	(d)	M ₂ (So acce			a ₂ (SO	4)3								[1]
	(e)	it wou it sho	uld <u>r</u> ws	rea bo	act wit oth ba	<u>h/diss</u> sic and	olves i Lacid p	<u>n</u> a nan <u>n</u> a nan properti pases/a	ned alk ies =1					[1] [1] [1] [max 2]
														[Total: 6]

	Page 3		e 3 Mark Scheme Syllabus					
			IGCSE – May/June 2013	0620	31			
3	(a) (i)	(a) (i) pieces have (same) surface area same amount / mass / quantity / volume / number of moles of carbonate						
	(ii)	(ii) no more bubbles / carbon dioxide or piece disappears / dissolves						
	(b) exp	erime	ent 1 $Ca^{2+} + CO_2 + H_2O$		[1]			
	(c) (i)	 (c) (i) more concentrated or higher concentration (of acid) (in experiment 1) accept: arguments based on collision theory 						
	(ii)	 (ii) ethanoic acid is a weak acid or hydrochloric acid is a strong acid accept: stronger or weaker 						
		ethanoic acid less ionised / dissociated / lower / smaller concentration of h accept: less hydrogen ions and vice versa argument but not dissociation o						
	(iii)	mov fewe	er temperature (particles) have less energy ing more slowly er collisions / lower collision rate		[1] [1] [1]			
		fewe with	er temperature (particles) have less energy er particles collide the necessary energy to react : less energy fewer successful collisions gains all 3	marks	[1] [1] [1]			
		[Total: 10]						
4	it is	satur	kane or hydrocarbon rated or only C—C single bonds no double bonds		[1] [1]			
			r formula C ₆ H ₁₂ I formula CH ₂		[1] [1]			
	(c) cor	rect s	tructural formula of cyclobutane		[1]			

	Page 4			Mark Scheme	Syllabus	Paper		
				IGCSE – May/June 2013	0620	31		
	(d)	(i)	C ₆ H acce	¹² ept: a correct structural formula		[1]		
		(ii) same molecular formula not : chemical formula different structural formulae / structures						
	(e)	add		[1]				
		cor	nd : (re	emains) brown or orange or red or yellow		[1]		
			ıd : ch :: clea	nanges from brown, etc. to colourless or decolourise ar	s	[1]		
		OR potassium manganate(VII) note : oxidation state not essential but if given must be correct or [0] accept : potassium permanganate						
		cond: remains pink / purple						
		cond : changes from pink to colourless (acidic) not : clear						
		cond: change from pink to green / brown (alkaline)						
						[Total: 11]		
5	(a)	(i)		metal above zinc → Mg²⁺ + 2e⁻		[1]		
		(ii)		$2Ag^+ \rightarrow Zn^{2+} + 2Ag$ e: not balanced only [1]		[2]		
		(iii)	beca	ause they can accept or gain electrons / change into	atoms or can be re	educed [1]		
		(iv)		or silver ge not essential but if given must be correct		[1]		
		(v)		and Cu ²⁺ or silver and copper ge not essential but if given must be correct		[1]		

	Page 5		5	Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2013	0620	31	
	(b)	Cu Sn Cd Zn <i>(i.e. all 4 in correct order)</i> relates order to voltage					
		one	e relev	vant comment from:		[1]	
		higher reactivity metals are the negative electrode / copper is least reactive becau positive electrode because copper would have the lowest voltage / copper cell V bigger the difference in reactivity, the bigger the voltage / zinc has highest voltage is most reactive / more reactive metals have higher voltage					
						[Total: 9]	
6	(a)	(i)	proto	on or H ⁺ acceptor		[1]	
		(ii)	•	asure) pH or (use) UI indicator e: can be implied need not be explicit		[1]	
			sodi	um hydroxide has high <u>er</u> pH / ammonia(aq) has low sentence would score 2 marks)	∕ <u>er</u> pH	[1]	
			appr	opriate colours with UI / appropriate numerical valu nonia is closer to green, blue-green, turquoise or lig		[1]	
				um hydroxide is darker blue / purple / violet		[1]	
			mea	sure electrical conductivity be implied need not be explicit		[1]	
				nonia (aq) is the poor <u>er</u> conductor/ sodium hydroxid	e is the better cor	ductor [1]	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	31

- (b) any five from:
 - high pressure favours lower volume side / movement to right / ammonia side, or high pressure increases the yield
 - high pressure increases rate
 - low temperature favours exothermic reaction / increases yield / favours the forward reaction
 - low temperature gives low rate or vice versa
 - catalyst increases rate or lowers activation energy
 - 450 °C low enough to give an economic yield but with catalyst gives a fast enough rate note need whole concept to get this compromise temperature point [5]
- (c) $2NH_3 + NaClO \rightarrow N_2H_4 + NaCl + H_2O$ [2] not balanced only 1
- (d) 4 hydrogen atoms 1 bonding pair each[1]2 nitrogen atoms with 1 bonding pair between them[1]one non-bonding pair on each N (need not be seen as a pair)[1]
- (e) (i) pH increases [1]
 (ii) oxygen needed for rusting / removes oxygen / reacts with oxygen [1]
 - [Total: 15]

7	(a) ((i)	add carbon / animal charcoal filter	[1] [1]
			OR	
			repeat experiment without indicator using same quantity / volume of acid	[1] [1]
	(i	ii)	add magnesium metal / carbonate / oxide / hydroxide to (hot) (hydrochloric) acid	[1]
			cond: until in excess or no more dissolves or reacts	[1]
			cond: filter (to remove unreacted solid)	[1]

Pa	ige 7	Mark Scheme	Paper				
		IGCSE – May/June 2013	0620	31			
(b)		of moles of HC <i>l</i> = 0.020 x 2.20 = 0.044 of moles of LiOH = 0.044		[1]			
	concentr accept 1 correct a	[1]					
(c)	percenta 45.9 so i	2H ₂ O) one mole = 78.5 ge water = 36 / 78.5 x 100 s LiC <i>I</i> .2H ₂ O rd the marks if you can follow the reasoning and it g	jives 45.9% of wa	[1] [1] [1]			
	note: if c	orrect option given mark this and ignore the rest of	the response				
	allow : m the corre	hod and [1] for					
				[Total: 10]			
8 (a)	con	<u>lar</u> arrangement / repeating pattern NOT structure d: ions molecules / atoms		[1] [1]			
	(ii) attra	ction between opposite charges / electrostatic attra	ction	[1]			
(b)		ed / mobile / free / sea of electrons		[1]			
		ons / cations ıs / protons / nuclei		[1]			
		between these electrons and ions		[1]			
(c)	giant co	valent					
	no ions no deloc	alised / free / mobile / sea of electrons or all electro	ns	[1] [1]			
	ionic in ionic solid ions cannot move liquid ionic compound ions can move		[1] [1]				
	metallic (both sol	id and liquid) metals have delocalised (or alternative	e term) electrons	[1]			
	([Total: 11]			