CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme Syllabus IGCSE – October/November 2012 0620		Paper
						32
1	(a)	(i)	Sb;			
		(ii)	Xe/	B;		
	((iii)	Sr/	Te / A / D;		
	((iv)	Sn a	and I / E and F;		
		(v)	Sr/	A;		[5]
	(b)	phy niok hard				[2]
		any two from:				
		niok com thar	emical bium is less reactive; forms coloured compounds; forms complex ions; its appounds have catalytic properties; has more than one oxidation state; has more an one valency electron; e: the response has to refer to or compare properties of both elements			
						[Total: 9]
2	(a)	liqui	id;			[1]
	(b)	reve acc igne	ept: 2 ore: a	(s); e sign; X in equation any compounds just look for state symbols the same compound on both sides of equation		[1] [1]
	(c)		_	condensation; evaporation or vaporisation		[1]
	(d)	•	_	n BC) solid melts / liquid boils (in region DE); fixed / sharp / single / specific temperature;		[1] [1]
						[Total: 6]
3	(a)	(i)	corre	ect structure of an isomer e.g. 2-chloropropane;		[1]
		(ii)	chloi light	rine; / heat / lead tetraethyl;		[1] [1]

Page 3		Mark Scheme	Syllabus	Paper	
		IGCSE – October/November 2012	0620	32	
(iii)	could or	d produce 2-chloropropane; d produce HC <i>l</i> ; d produce dichloropropanes = [2]		[1] [1]	
	yello note	silver nitrate / lead nitrate; ow precipitate; e: do not insist on presence of dilute nitric acid		[1] [1]	
(11)	prop	anol / propan-1-ol;		[1]	
(c) (i)	(i) for A; reaction slower; decreased collision rate; less bromobutane present / concentration of bromobutane less / less reacting particles; any two accept: reverse arguments for B				
(ii)	orga	gens $Cl > Br > I$ reactivity / reactivity decreases down to halides $I > Br > Cl$ / reactivity increases down to site without explanation = [1]		[1] [1]	
(iii)	less parti less	three from: energy; cles move slower; collisions / fewer particles have energy to react / ferer rate;	ewer successful co	llisions; [3] [Total: 15]	
(a) C +	- O ₂	\rightarrow CO ₂		[1]	
(b) (i)	then or	already formed (from C burning or from $CaCO_3$); carbon reacts with carbon dioxide; $CO_2 \rightarrow 2CO = [2] \text{ If equation not balanced} = [1]$		[1] [1]	
(ii)	not b	O ₃ + 3CO → 2Fe + 3CO ₂ palanced = [1] reduction by carbon		[2]	
read CaC or C	cts wi CO₃ + CaO	e / neutralise silica / silicon dioxide / silicon(IV) oxid ith limestone to form slag / calcium silicate; \cdot SiO ₂ \rightarrow CaSiO ₃ + CO ₂ + SiO ₂ \rightarrow CaSiO ₃ \rightarrow CaO + CO ₂	e / sand;	[1] [1] [1]	

4

	Page 4			ark Scheme	Syllabus	Paper
			IGCSE – Oc	tober/November 2012	0620	32
	(d)	(i) gal	vanising / galvanisation	on / sacrificial protection;		[1]
			crificial protection / zir c corrodes rather thai			
		zin	c is oxidised in prefer	ence to iron;	·	
		zin	c more reactive / elec	•	irori,	
			c loses electrons mor ctrons move on to iro	•		
		any	/ three			[3]
						[Total: 12]
_	(- \					
5	(a)		ng (wood pulp / silk /	, .		
		manufacture of sulfuric acid / SO ₃ / in Contact process; fumigating / sterilising; refrigerant; making dyes; making wine; insecticide;				
		fungicio				[2]
	(b)	hurn / h	eat / react sulfur;			[1]
	(6)	in air / d				[1]
		or burn / h	eat / roast zinc sulfid	e or lead sulfide;		
		in air / d	oxygen;			
	(c)	from pu	rple / pink; not: red			[1]
	(-)		irless; not clear			[1]
	, D			0.45/400 0.005		F43
	(d)	numbei	of moles of Na ₂ SO ₃ of moles of SO ₂ form	ned = 0.025		[1] [1]
		volume allow: e	-	24 = 0.6 dm ³ /litres or 600 cn	n ³	[1]
		for 1.6	g of SO_2 [1] only 22.4 max [2]			
			eed correct units for I	ast mark		

[Total: 9]

	Page 5		Mark Scheme	Syllabus	
			IGCSE – October/November 2012	0620	32
6	(a) (i)	corre	ect arrow from negative terminal of battery or from a	inode;	[1 [1 [1 [1 [1 [1 [1 [1 [1 [1] [1]
	(ii)	from	battery / power supply / cell;		[1
	` ,	from	negative electrode of battery to external circuit;		[1
			om anode; iodide ion losing electron or oxidation of anion;		
	(iii)		cannot move in solid / ions can move in liquid;		[1
	()		1		·
	(b) cop	-	s to) sulfuric acid;		[1
	(CII	anges	s to j sulfulle acid,		ין
	-	droge	n; s to) potassium hydroxide;		[1
	(CI	ialiye	s to) potassium nyuroxiue,		ני
	(c) (i)	2H⁺	+ 2e → H ₂		[2
		not b	palanced = [1]		
	(ii)	40H	\rightarrow O ₂ + 2H ₂ O + 4e		[1
	(iii)	wate	er used up;		[1
	` '				_
	(d) it is a cell;			[1	
	hydrogen reacts with oxygen; this reaction produces energy / is exothermic / produces flow of electrons				[1
			chemical energy to electrical energy;		[1
					[Total: 15
_	<i>(</i>) <i>(</i>)	0.11			F.4
7	(a) (i)	C _n H ₂	_{2n+1} OH		[1
	(ii)		17 = 99, 2n+1 = 99, n = 7		F.A
		for a C ₇ H₁	ny evidence of working out ₅OH		[1 [1
	(iii)	4hns	s around C;		
	(111)	-	on each hydrogen;		ر ا [1
		2bps	s and 2nbps on oxygen;		[1
	(b) (i)	incre	eases yield / moves equilibrium to RHS / favours for	ward reaction;	[1
	. , . ,		pressure favours side with smaller number of (gas)		[1
	(ii)	-	two from:		
		_	er temperature / catalyst causes faster reaction; ment about compromise conditions to give best rate	and vield	
		at 25	50°C (lower temp) higher yield / forward reaction fav	oured;	
			50°C (higher temp) lower yield / back reaction favou		[2

Mark Scheme

Syllabus

Paper

[3]

Page 5

at 350°C (higher temp) lower yield / back reaction favoured;

Page 6	Page 6 Mark Scheme		Paper
	IGCSE – October/November 2012	0620	32

(c) (i) methanoic acid; [1] correct SF showing all bonds; [1] accept: -OH

(ii) methyl methanoate; [1]

[Total: 14]