

PHYSICS

9702/52 May/June 2016

Paper 5 Planning, Analysis and Evaluation MARK SCHEME Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age 2	Cambridge Ir	tornat	Mark Scheme tional AS/A Level – Ma	av/ lune ?	2016	Syllabus 9702	Paper 52
	estion			nonai AS/A Levei - Ma	ay/June 2	.010	31 0 2	JL
		U (
P	-	the problem (2 mar		d a is the dependent va	riable or	vary and	monsura	[4]
	θ is the independent variable and <i>a</i> is the dependent variable, or vary θ and measure <i>a</i> .						[1]	
P	•	F constant.		,				[1]
Ме	thods	of data collection (4	1 mark	(S)				
М	•	0	•	with labelled support d plane or as vertical su	ipport).			[1]
М								
		ure marked distance a labelled protracto		which sin θ or θ may be correct position.)	e determi	ned.		[1]
М				ocity to determine a, e.	-		-	
	stopw displa		nnecte	ed to a timer, motion se	nsor conr	iected to a	time	[1]
М	Use a	balance to measure	the <u>m</u>	ass of the trolley.				[1]
Me	thod o	f analysis (3 marks)					
A		graph of nstsin <i>θ.</i>	or	Plot a graph of <i>ma</i> against sin <i>θ</i> .	or	Plot a gra <i>ma</i> again	aph of st <i>mg</i> sin <i>θ</i> .	[1]
A	Relatio	onship is valid if the	graph	is a straight line and <u>do</u>	es not pa	iss through	the origin	[1]
A	k = F -	$-m \times (y-intercept)$	or	k = F - (y-intercept)	or	k = F – (y	-intercept)	[1]
Do	not allo	ow Ig-Ig graphs.						
Ad	ditiona	ıl detail (6 marks)						
Re	levant p	points might include:						[6]
1	Keep	mass of trolley cons	tant/us	se same trolley.				
2	Correct trigonometry relationship to determine sin θ or θ using marked lengths.							
3	Use ruler to measure appropriate distance to determine <i>a</i> , e.g. length of slope, length of card for light gate method, position of motion sensor.							
4	Equat	tion to determine <i>a</i> <u>fr</u>	om me	easurements taken app	ropriately	with <i>a</i> as t	he subject.	
5	Meas	urement of <i>F</i> for a va	lid me	thod e.a. take reading f	rom newt	on-meter c	r from streto	:hed

- 5 Measurement of *F* for a valid method e.g. take reading from newton-meter or from stretched elastic/spring from extension (allow falling weight e.g. F = mg).
- 6 Use a constant extension to produce a <u>constant</u> force when using stretched spring/elastic.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9702	52

- 7 Method to ensure the inclined plane is the same height each side of the plane or spirit level across plane or ensure force F (or string) is parallel to the plane.
- 8 Safety precaution linked to falling mass/trolley or spring/elastic breaking (not string).
- 9 Rearrangement of relationship into y = mx + c e.g. $ma = -mg \sin \theta + (F k)$ or $a = -g \sin \theta + \frac{F k}{m}$ or correct *y*-intercept (subject must be *y*-axis).
- 10 Repeat experiment for each angle θ to find average for *a*.

Do not allow vague computer methods.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9702	52

Question 2 Analysis, conclusions and evaluation (15 marks)

	Mark	Expected Answer	Additional Guidance
(a)	A1	$\frac{4\rho L}{\pi}$	
(b)	T1	$\frac{1}{d^2}$ / 10 ⁶ m ⁻²	
	Τ2	1.2 or 1.21 3.2 or 3.19 4.7 or 4.73 6.9 or 6.93 9.8 or 9.77 14 or 13.7	All values to 2 s.f. or 3 s.f. Allow a mixture of significant figures. Must be values in table.
	U1	From ± 0.03 to ± 1	Allow more than one significant figure. Allow zero for first uncertainty and up to 1.2 for largest uncertainty.
(c) (i)	G1	Six points plotted correctly	Must be within half a small square. Do not allow "blobs". ECF allowed from table.
	U2	Error bars in $\frac{1}{d^2}$ plotted correctly	All error bars to be plotted. Length of bar must be accurate to less than half a small square and symmetrical.
(ii)	G2	Line of best fit	Lower end of line must pass between (2.6, 4.0) and (3.0, 4.0) and upper end of line must pass between (12.4, 18.0) and (13.0, 18.0).
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.	Line should be clearly labelled or dashed. Examiner judgement on worst acceptable line. Must be steepest/shallowest line. Mark scored only if error bars are plotted.
(iii)	C1	Gradient of line of best fit	The triangle used should be at least half the length of the drawn line. Check the read-offs. Work to half a small square. Do not penalise POT. (Should be about $1.4 - 1.5 \times 10^{-6}$.)
	U3	Absolute uncertainty in gradient	Method of determining absolute uncertainty: difference in worst gradient and gradient.

Page 5		Mark Scheme	Syllabus	Paper		
		Cambridge International AS/A Leve	9702	52		
	Mark	Expected Answer	Additional Guidance			
(d) (i)	(d) (i) C2 $\frac{\pi \times \text{gradient}}{4L} = 0.7854 \times \text{gradient}$ Must use gradient value. Do not per POT (Should be about 1×10^{-6} .)				nalise	
	C3	Ωm	Correct unit and correct power of ten.			
(ii)	U4	Percentage uncertainty in ρ	ercentage uncertainty in ρ Percentage uncertainty in gradient + 1%.			
(e)	C4R in the range 25.5 to 28.4 and given to 2 or 3 s.f.Allow 26 or 27 or 28. Allow ECF for POT error in (d)(i) e.g 2.7×10^7 .					
	U5	Absolute uncertainty in <i>R</i>	Percentage uncertainty r 8.6%.	must be greater than		

Page 6	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2016	9702	52

Uncertainties in Question 2

(c) (iii) Gradient [U3]

uncertainty = gradient of line of best fit - gradient of worst acceptable line

uncertainty = 1/2 (steepest worst line gradient – shallowest worst line gradient)

(d) (ii) [U4]

percentage uncertainty = $\left(\frac{\Delta \text{gradient}}{\text{gradient}} + \frac{0.01}{1.00}\right) \times 100 = \left(\frac{\Delta \text{gradient}}{\text{gradient}}\right) \times 100 + 1\%$

$$\max \rho = \frac{\pi \times \max \text{ gradient}}{4 \times \min L} = \frac{\pi \times \max \text{ gradient}}{4 \times 0.99}$$
$$\min \rho = \frac{\pi \times \min \text{ gradient}}{\pi \times \min \text{ gradient}} = \frac{\pi \times \min \text{ gradient}}{\pi \times \min \text{ gradient}}$$

$$\min \rho = \frac{1}{4 \times \max L} = \frac{1}{4 \times 1.01}$$

(e) [U5]

percentage uncertainty =
$$\left(\frac{\Delta \text{gradient}}{\text{gradient}} + 2 \times \left(\frac{0.01}{0.23}\right)\right) \times 100 = \left(\frac{\Delta \text{gradient}}{\text{gradient}} + 0.086\right) \times 100$$

percentage uncertainty = $\left(\frac{\Delta \rho}{\rho} + \frac{0.01}{1.00} + 2 \times \left(\frac{0.01}{0.23}\right)\right) \times 100 = \left(\frac{\Delta \rho}{\rho} + 0.096\right) \times 100$
max $R = \frac{\text{max gradient}}{d_{\text{min}}^2}$
max $R = \frac{4 \times L_{\text{max}} \times \rho_{\text{max}}}{\pi \times d_{\text{min}}^2}$

 $\min R = \frac{\min \text{ gradient}}{d_{\max}^2}$

 $\min R = \frac{4 \times L_{\min} \times \rho_{\min}}{\pi \times d_{\max}^2}$