

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/42

Paper 4 A Level Structured Questions

May/June 2016

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

P	age 2	2		Syllabus	Pape	er
			Cambridge International AS/A Level – May/June 2016	9702	42	
1	(a)	(i)	gravitational force provides/is the centripetal force		B1	
			same gravitational force (by Newton III)		B1	[2]
		(ii)	$\omega = 2\pi/T = 2\pi/(4.0 \times 365 \times 24 \times 3600)$		C1	
			= $5.0 (4.98) \times 10^{-8} \text{rad s}^{-1}$		A1	[2]
	(b)	(i)	(centripetal force =) $M_A d\omega^2 = M_B (2.8 \times 10^8 - d)\omega^2$			
			$M_{A}d_{A}=M_{B}d_{B}$		C1	
			$M_{\rm A}/M_{\rm B} = 3.0 = (2.8 \times 10^8 - d)/d$		C1	
			$d = 7.0 \times 10^7 \mathrm{km}$		A1	[3]
		(ii)	$GM_{\rm A}M_{\rm B}/(2.8\times10^{11})^2 = M_{\rm A}d\omega^2$		B1	
			$M_{\rm B} = (2.8 \times 10^{11})^2 \times d\omega^2 / G$ = $(2.8 \times 10^{11})^2 \times (7.0 \times 10^{10}) \times (4.98 \times 10^{-8})^2 / (6.67 \times 10^{-11})$		C1	
			$= 2.0 \times 10^{29} \text{ kg}$		A1	[3]
2	(a)	(i)	number of <u>atoms/nuclei</u> in 12 g of carbon-12		B1	[1]
		(ii)	amount of substance		M1	
			containing N_A (or 6.02×10^{23}) particles/molecules/atoms or			
			which contains the same number of particles/atoms/molecules as the are atoms in 12g of carbon-12	ere	A1	[2]
	(b)	pV	= nRT			
		2.0	$\times 10^7 \times 1.8 \times 10^4 \times 10^{-6} = n \times 8.31 \times 290$, so $n = 149$ mol or 150 mol		A1	[1]
	(c)	(i)	<i>V</i> and <i>T</i> constant and so pressure reduced by 5.0% pressure = $0.95 \times 2.0 \times 10^7$		C1	
			or			
			calculation of new n (= 142.5 mol) and correct substitution into pV =	nRT	(C1)	
			pressure = $1.9 \times 10^7 \text{ Pa}$		A1	[2]

P	age 3		Syllabus	Pap	
		Cambridge International AS/A Level – May/June 2016	9702	42	
	((ii) loss is $5/100 \times 150 \text{mol} = 7.5 \text{mol}$ or $\Delta N = 4.52 \times 10^{24}$		C1	
		$t = (7.5 \times 6.02 \times 10^{23})/1.5 \times 10^{19}$ or		0.	
		$t = 4.52 \times 10^{24} / 1.5 \times 10^{19}$		C1	
		$= 3.0 \times 10^5 \mathrm{s}$		A1	[3]
3		no <u>net</u> energy transfer between the bodies <i>or</i>			
		bodies are at the same temperature		B1	[1]
	(b)	(i) thermocouple, platinum/metal resistance thermometer, pyrometer		В1	[1]
	((ii) thermistor, thermocouple		B1	[1]
	(c)	(i) change = 11.5 K		B1	[1]
	((ii) final temperature = 311.2 K		B1	[1]
4	(a)	(i) $T = 0.60 \text{ s} \text{ and } \omega = 2\pi/T$		C1	
		$\omega = 10 (10.47) \mathrm{rad}\mathrm{s}^{-1}$		A1	[2]
	((ii) energy = $\frac{1}{2}m\omega^2 x_0^2$ or $\frac{1}{2}mv^2 \underline{and} v = \omega x_0$		C1	
		= $\frac{1}{2} \times 120 \times 10^{-3} \times (10.5)^2 \times (2.0 \times 10^{-2})^2$			
		$= 2.6 \times 10^{-3} \mathrm{J}$		A1	[2]
	(b)	sketch: smooth curve in correct directions		B1	
		peak at f		M1	
		amplitude never zero and line extends from 0.7f to 1.3f		A1	[3]
	(c)	sketch: peaked line always below a peaked line A		M1	
		peak not as sharp <u>and</u> at (or slightly less than) frequency of peak in line	e A	A1	[2]

	age -		Cambridge International AS/A Level – May/June 2016	9702	42	
5	(a)	am	amplitude of the carrier wave varies		M1	
		in s	ynchrony with displacement of the information/audio signal		A1	[2]
	(b)	(i)	10 kHz		A1	[1]
		(ii)	5 kHz		A1	[1]
	(c)	(i)	24 = 10 lg ($P_{MIN}/\{5.0 \times 10^{-13}\}$)		C1	
			$P_{\text{MIN}} = 1.3 \ (1.26) \times 10^{-10} \text{W}$		A1	[2]
		(ii)	$45 \times 2 = 10 \text{ lg } (\{500 \times 10^{-3}\}/P)$			
			$P = 5.0 \times 10^{-10} \text{ (W)}$		M1	
			P > P _{MIN} so yes		A1	
			or			
			maximum attenuation calculated to be 96 (dB) $96dB > 2\times45dB$ so yes		(M1) (A1)	
			or			
			maximum length of wire calculated to be 48 (km) actual length 45 km < 48 km so yes		(M1) (A1)	
			or			
			maximum attenuation per unit length calculated to be $2.2\mathrm{dBkm^{-1}}$ $2.2\mathrm{dBkm^{-1}}$ > $2.0\mathrm{dBkm^{-1}}$ so yes		(M1) (A1)	[2]
6	(a)	line	s perpendicular to surface			
		<i>or</i> line	s are radial		M1	
		line	s appear to come from centre		A1	[2]
	(b)	(i)	$F_{\rm E} = (1.6 \times 10^{-19})^2 / 4\pi \varepsilon_0 x^2$		C1	
			$F_{\rm G} = G \times (1.67 \times 10^{-27})^2 / x^2$		C1	
			$F_{\rm E}/F_{\rm G} = (1.6 \times 10^{-19})^2 \times (8.99 \times 10^9)/[(1.67 \times 10^{-27})^2 \times (6.67 \times 10^{-11})]$ = 1.2 (1.24) × 10 ³⁶		A1	[3]
		(ii)	$F_{E}\gg F_{G}$		B1	[1]

Mark Scheme

Syllabus

Paper

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9702	42

7	(a)	Δ α	storing	anarav
,	la)	e.q.	Storing	energy

blocking d.c. in oscillator circuits in tuning circuits in timing circuits

any two B2 [2]

(b) (i)
$$1/6 + 1/C + 1/C = 1/4$$

$$C = 24 \,\mu\text{F}$$
 A1 [2]

(ii)
$$Q = CV$$

= $4.0 \times 10^{-6} \times 12$ C1
= $48 \,\mu\text{C}$ A1 [2]

(ii) changes in
$$V_{\text{OUT}}$$
 M1 occur immediately when V_{IN} changes A1

or

changes in
$$V_{\text{IN}}$$
 (M1) result in immediate changes to V_{OUT} (A1) [2]

(b)
$$12 = 1 + R/(1.5 \times 10^3)$$

$$R = 16.5 \text{ k}\Omega$$
 A1 [2]

(c) straight line from
$$(0,0)$$
 to $(0.75t_1, 9.0 \text{ V})$

horizontal line from endpoint of straight line to t_1 B1

+9 V to
$$-9$$
 V (or *v.v.*) at t_1

correct line to
$$t_2$$
 B1 [4]

Page 6		ô	Mark Scheme		Paper	
			Cambridge International AS/A Level – May/June 2016	9702	42	
9	(a)	(i)	number density of charge carriers/ <u>free</u> electrons or			
			number per unit volume of charge carriers/ <u>free</u> electrons		B1	[1]
		(ii)	PX or QY or RZ		B1	[1]
	(b)	(i)	V_{H} is inversely proportional to n		B1	
			for semiconductors, n is (much) smaller than for metals		В1	[2]
		(ii)	magnetic field would deflect holes and electrons in same direction		B1	
			(because) electrons are (-)ve, holes are (+)ve		M1	
			so $V_{\rm H}$ has opposite polarity/opposite sign		A1	[3]
10	(a)	iror	rod changes flux (density)/field		B1	
		cha	inge of <u>flux</u> <u>in coil Q</u> causes induced e.m.f.		B1	[2]
	(b)	cor	estant reading (either polarity) from time zero to near t_1		B1	
		spil	ke in one direction near $t_{ m 1}$ clearly showing a larger voltage		M1	
		of c	ppposite polarity		A1	
		zer	o reading from near t_1 to t_2		B1	[4]
11	(a)	poi	nt P shown at 'lower end' of load		B1	[1]
	(b)	$V_{r.m}$	$_{0.s.} = 6.0 / \sqrt{2} = 4.24 \text{ V}$		C1	
		$I_{r.m.}$	$_{\text{s.}} = 4.24/(2.4 \times 10^3)$ = $1.8 \times 10^{-3} \text{A}$		A1	[2]
	(c)	(i)	capacitor in parallel with load		B1	[1]
		(ii)	line from peak to curve at 3.0 V for either half- or full-wave rectified		M1	
			correct curvature on line (gradient becoming more shallow)		A1	
			line drawn as for full-wave rectified		A1	[3]

B1 M1 A1 B1 B1	[3]
M1 A1 B1	[3]
A1 B1	[3]
B1	[3]
B1	
	[2]
B1	[1]
B1	[1]
B1	[1]
M1	
A1	[2]
B1	
B1	
A2	[4]
M1	
A1	[2]
	B1 A2 M1