Cambridge International Examinations
 Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/22
Paper 2 AS Level Structured Questions
May/June 2016
MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
Page 2 Mark Scheme

1 (a) acceleration $=$ change in velocity / time (taken) or rate of change of velocity
(b) (i) $v=0+$ at or $v=a t$

$$
(a=36 / 19=) 1.9(1.8947) \mathrm{ms}^{-2}
$$

(ii) $s=1 / 2(u+v) t$ or $s=v^{2} / 2 a$ or $s=1 / 2 a t^{2}$ $=1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2}$

$$
=340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m})
$$

M1
(iii) 1. $(\Delta K E=) \frac{1}{1} 2 \times 95 \times(36)^{2}$

$$
=62000(61560) \mathrm{J}
$$

2. $(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \sin 40^{\circ}$ or $95 \times 9.81 \times 218.5$ C1

$$
=200000 \mathrm{~J}
$$

(iv) work done (by frictional force) $=\Delta \mathrm{PE}-\Delta \mathrm{KE}$ or work done $=200000-62000$ (values from 1b(iii) 1. and 2.) C1 (frictional force $=138000 / 340=$) $410(406) \mathrm{N}[420 \mathrm{~N}$ if full figures used]
(v) $-m a=m g \sin 20^{\circ}-f$ or $m a=-m g \sin 20^{\circ}+f$
$-95 \times 3.0=95 \times 3.36-f$
$f=600(604) N$

2 (a) $p=F / A$ M1
use of $m=\rho V$ and use of $V=A h$ and use of $F=m g$ M1
correct substitution to obtain $p=\rho g h$
(b) (i) (when h is zero the pressure is not zero due to) pressure from the air/atmosphere
(ii) gradient $=\rho g$ or $P-1.0 \times 10^{5}=\rho g h$
e.g. $\rho g=1.0 \times 10^{5} / 0.75(=133333)$

$$
\begin{aligned}
\rho & =133333 / 9.81 \\
& =14000(13592) \mathrm{kg} \mathrm{~m}^{-3}
\end{aligned}
$$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9702	22

3 (a) Young modulus = stress/strain
(b) (i) $E=(F \times l) /(A \times e)$ or $e=(F \times l) /(A \times E)$
$e \propto 1 / E$
or
ratio $e_{\mathrm{C}} / e_{\mathrm{S}}=E_{\mathrm{S}} / E_{\mathrm{C}}$ or $\left(1.9 \times 10^{11}\right) /\left(1.2 \times 10^{11}\right)$ or $19 / 12$
C1
(ratio =) 1.6 (1.58)
A1
(ii) two straight lines from $(0,0)$ with \mathbf{S} having the steepest gradient

B1
B1

4 (a) longitudinal: vibrations/oscillations (of the particles/wave) are parallel to the direction or in the same direction (of the propagation of energy)
transverse: vibrations/oscillations (of the particles/wave) are perpendicular to the direction (of the propagation of energy)
(b) LHS: intensity $=$ power/area units: $\mathrm{kgms}^{-2} \times \mathrm{m} \times \mathrm{s}^{-1} \times \mathrm{m}^{-2}$ or $\mathrm{kgm}^{2} \mathrm{~s}^{-3} \times \mathrm{m}^{-2}$

RHS: units: $\mathrm{ms}^{-1} \times \mathrm{kg} \mathrm{m}^{-3} \times \mathrm{s}^{-2} \times \mathrm{m}^{2}$
LHS and RHS both $\mathrm{kg} \mathrm{s}^{-3}$
A1
(c) (i) change/difference in the observed/apparent frequency when the source is moving (relative to the observer)
(ii) wavelength increases/frequency decreases/red shift
(d) observed frequency $=v f_{\mathrm{S}} /\left(v-v_{\mathrm{S}}\right)$
$550=(340 \times 510) /\left(340-v_{\mathrm{s}}\right)$
C1
$v_{\mathrm{S}}=25(24.7) \mathrm{m} \mathrm{s}^{-1}$
A1

5 (a) diffraction: spreading/diverging of waves/light (takes place) at (each) slit/ element/gap/aperture
interference: overlapping of waves (from coherent sources at each element)
path difference $\lambda /$ phase difference of $360\left({ }^{\circ}\right) / 2 \pi$ (produces the first order)
(b) $d \sin \theta=n \lambda$ or $\sin \theta=N n \lambda$
$d=\left(2 \times 486 \times 10^{-9}\right) / \sin 29.7^{\circ}\left(=1.962 \times 10^{-6}\right)$ C1
number of lines $=510(509.7) \mathrm{mm}^{-1} \quad$ A1

6 (a) at least six horizontal lines equally spaced and arrow to the right
(b) charge used $2 e$
gain in $\mathrm{KE}=15 \times 1.6 \times 10^{-19} \times 10^{3}=2 \times 1.6 \times 10^{-19} \times V$ (p.d.across plates)
or
$F(=W / d)=15 \times 1.6 \times 10^{-19} \times 10^{3} / 16 \times 10^{-3}$
(hence $V=7500 \mathrm{~V}$ or $F=1.5 \times 10^{-13} \mathrm{~N}$)
$E=V / d \quad$ or $E=F / Q$
$E=\left(7500 / 16 \times 10^{-3}\right)$ or $E=\left(1.5 \times 10^{-13} / 3.2 \times 10^{-19}\right)$
$E=4.7 \times 10^{5}(468750) \mathrm{Vm}^{-1}$ A1
[4]
or
$K E\left(=1 / 2 m v^{2}\right)=15 \times 10^{3} \times 1.6 \times 10^{-19}$
$v=\left[\left(2 \times 15 \times 10^{3} \times 1.6 \times 10^{-19}\right) /\left(6.68 \times 10^{-27}\right)\right]^{1 / 2}=8.5 \times 10^{5} \mathrm{~ms}^{-1}$
$a\left(=v^{2} / 2 s\right)=\left(8.5 \times 10^{5}\right)^{2} / 2 \times 16 \times 10^{-3}=2.25 \times 10^{13} \mathrm{~ms}^{-2}$
$F\left(=6.68 \times 10^{-27} \times 2.25 \times 10^{-13}\right)=1.5 \times 10^{-13} \mathrm{~N}$
$E=F / Q$
$Q=2 e$
Q
$E=4.7 \times 10^{5} \mathrm{Vm}^{-1}$
Page 5 Mark Scheme

7 (a) charge exists only in discrete amounts
(b) (i) $E=I(R+r)$ or $V=I R$

C1

$$
\text { (total resistance }=\text {) } 2.7+0.30+0.25(=3.25 \Omega)
$$

$$
I=9.0 /(2.7+0.30+0.25) \text { or } 9.0 / 3.25=2.8 \mathrm{~A}
$$

(ii) $\quad V=I R_{\text {ext }}$

$$
=2.77 \times 3.0 \text { or } 2.8 \times 3.0
$$

or

$$
\begin{aligned}
V & =E-I r \\
& =9.0-2.77 \times 0.25 \text { or } 9.0-2.8 \times 0.25 \\
V & =8.3(8.31) \mathrm{V} \text { or } 8.4 \mathrm{~V}
\end{aligned}
$$

(c) (i) $I=n e v A$

$$
v=2.77 /\left(8.5 \times 10^{29} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-6}\right) \quad M 1
$$

$$
=8.1(8.147) \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-1} \text { or } 8.2 \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-1}
$$

A1
(ii) A reduces by a factor 4 ($1 / 4$ less) or resistance of Z goes up by $4 \times \quad$ M1
current goes down but by less than a factor of 4 (as total resistance does not go up by a factor of 4) so drift speed goes up

8 (a) both electron and neutrino: lepton(s)
(b) (i) ${ }_{1}^{1} \mathrm{p} \rightarrow{ }_{0}^{1} \mathrm{n}+{ }_{1}^{0} \beta+{ }_{0}^{0} v$
correct symbols for particles M1
correct numerical values (allow no values on neutrino) A1
(ii) up up down or uud \rightarrow up down down or udd

B1
(iii) weak (nuclear)

B1

