

PHYSICS

9702/21 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		Mark Scheme		Paper	
		Cambridge International AS/A Level – May/June 2016	9702	21	
1	(a)	(i) (50 to 200) $\times 10^{-3}$ kg or (0.05 to 0.2) kg		B1	[1]
		(ii) $(50 \text{ to } 300) \text{ cm}^3$		B1	[1]
	(b)	density = mass/volume or $\rho = M/V$		C1	
		$V = [\pi (0.38 \times 10^{-3})^2 \times 25.0 \times 10^{-2}]/4 \ (= 2.835 \times 10^{-8} \ \text{m}^3)$		C1	
		$\rho = (0.225 \times 10^{-3})/2.835 \times 10^{-8} = 7940 (\text{kg m}^{-3})$		A1	
		$\Delta \rho / \rho = 2(0.01/0.38) + (0.1/25.0) + (0.001/0.225) [= 0.061]$			
		$\%\rho$ = 5.3% + 0.40% + 0.44% (= 6.1%)		C1	
		$\Delta \rho$ = 0.061 × 7940 = 480 (kg m ⁻³)			
		density = (7.9 \pm 0.5) \times $10^{3}kgm^{-3}$ or (7900 \pm 500) kgm^{-3}		A1	[5]
2	(a)	(i) horizontal component (= $12\cos 50^\circ$) = 7.7 m s ⁻¹		A1	[1]
		(ii) vertical component (= $12 \sin 50^\circ$ or $7.7 \tan 50^\circ$) = $9.2 \mathrm{m s^{-1}}$		A1	[1]
	(b)	$v^2 = u^2 + 2as \text{ and } v = 0$ or $mgh = \frac{1}{2}mv^2$ or $s = v^2 \sin^2 \theta / 2g$		C1	
		$9.2^2 = 2 \times 9.81 \times h$ hence $h = 4.3$ (4.31) m		A1	[2]
		alternative methods using time to maximum height of 0.94 s:			
		$s = ut + \frac{1}{2}at^2$ and $t = 0.94$ (s) $s = 9.2 \times 0.94 - \frac{1}{2} \times 9.81 \times 0.94^2$ hence $s = 4.3$ m		(C1) (A1)	
		or $s = vt - \frac{1}{2}at^2$ and $t = 0.94$ (s) $s = \frac{1}{2} \times 9.81 \times 0.94^2$ hence $s = 4.3$ m		(C1) (A1)	
		or $s = \frac{1}{2}(u + v)t$ and $t = 0.94$ (s) $s = \frac{1}{2} \times 9.2 \times 0.94$ hence $s = 4.3$ m		(C1) (A1)	
	(c)	<i>t</i> (= 9.2/9.81)= 0.94 (0.938)s		C1	
		horizontal distance = 0.938×7.7 (= 7.23 m)		C1	
		displacement = $[4.3^2 + 7.23^2]^{1/2}$		C1	
		= 8.4 m		A1	[4]

Page 3		3	Mark Scheme Sylla	bus	Paper	
			Cambridge International AS/A Level – May/June 2016 970	12	21	
3	(a)	(i)	force (= <i>mg</i> = 0.15 × 9.81) = 1.5 (1.47) N		A1	[1]
		(ii)	resultant force (on ball) is zero so normal contact force = weight or the forces are in opposite directions so normal contact force = weight			
			or			
			normal contact force up = weight down		A1	[1]
	(b)	(i)	(resultant) force proportional/equal to rate of change of momentum		B1	[1]
		(ii)	change in momentum = $0.15 \times (6.2 + 2.5)$ (= 1.305 Ns)		C1	
			magnitude of force = 1.305/0.12 = 11 (10.9) N		A1	
			or			
			(average) acceleration = $(6.2 + 2.5) / 0.12 (= 72.5 \text{ m s}^{-2})$		(C1)	
			magnitude of force = 0.15×72.5 = 11 (10.9)N		(A1)	
			(direction of force is) upwards/up		B1	[3]
		(iii)	there is a change/gain in momentum of the floor		M1	
			this is equal (and opposite) to the change/loss in momentum of the ball so momentum is conserved)	A1	[2]
			or			
			change of (total) momentum of <u>ball and floor</u> is zero so momentum is conserved		(M1) (A1)	
			or			
			(total) momentum of <u>ball and floor</u> before is equal to the (total) momentur of <u>ball and floor</u> after so momentum is conserved	ก	(M1) (A1)	

Pa	age 4	1	Mark Scheme Syllabus	Pape	ər
			Cambridge International AS/A Level – May/June 2016 9702	21	
4	(a)	the ch	e energy (stored) in a body due to its extension/compression/deformation/ ange in shape/size	B1	[1]
	(b)	(i)	two values of F/x are calculated which are the same e.g. $10.4/40 = 0.26$ and $6.5/25 = 0.26$	B1	
			or		
			ratio of two forces and the ratio of the corresponding two extensions are calculated which are the same e.g. 5.2/10.4 = 0.5 and 20/40 = 0.5	(B1)	
			or		
			gradient of graph line calculated and coordinates of one point on the line used with straight line equation $y = mx + c$ to show $c = 0$	(B1)	
			(so) force is proportional to extension (and so Hooke's law obeyed)	B1	[2]
	(b)	(ii)	1. $k = F/x$ or $k =$ gradient	C1	
			gradient or values from a single point used e.g. $k = 10.4/(40 \times 10^{-2})$		
			$k = 26 \mathrm{N}\mathrm{m}^{-1}$	A1	[2]
			2. work done = area under graph or $\frac{1}{2}Fx$ or $\frac{1}{2}(F_2 + F_1)(x_2 - x_1)$ or $\frac{1}{2}kx^2$ or $\frac{1}{2}k(x_2^2 - x_1^2)$	C1	
			= $\frac{1}{2} \times 10.4 \times 0.4 - \frac{1}{2} \times 5.2 \times 0.2$ or $\frac{1}{2} \times (5.2 + 10.4) \times 20 \times 10^{-2}$ or $\frac{1}{2} \times 26 \times (0.4^2 - 0.2^2)$	C1	
			= 1.6 J	A1	[3]
	(c)	rei	move the force and the spring goes back to its original length	B1	[1]
5	(a)	T	= 4 (ms) or 4×10^{-3} (s)	C1	
		f	= 1/T = 1/0.004		
			= 250 Hz	A1	[2]
	(b)	int	tensity ∞ (amplitude) ² and amplitude = 2.8 (2.83)(cm)	B1	
		cu	rve with same period and with amplitude 2.8 cm	B1	
		cu	rve shifted 1.0 ms to left or to right of wave X	B1	[3]

Pa	ge {	5	Mark Scheme Cambridge International AS/A Level – May/June 2016	Syllabus 9702	Pap 21	er
<u> </u>	(c)	(i)	gradient = $(4.5 - 2.4) \times 10^{-3} / (3.25 - 1.75)$ [= 1.4×10^{-3}]		B1]
	(-)	()	wavelength = $0.45 \times 10^{-3} \times 1.4 \times 10^{-3}$		C1	
			$= 6.30 \times 10^{-7}$ (m)		C1	
			= 630 nm		A1	[4]
		(ii)	(gradient is equal to λ/a therefore) gradient of line is reduced		B1	
			value of <i>x</i> will be reduced for all values of <i>D</i> or new line is completely below old line or intercept is less		B1	[2]
6	(a)	(cc	oulomb is) ampere second		B1	[1]
	(b)	(to	tal) charge or Q = <i>nAle</i>		M1	
		I =	Q/t and l/t = v		M1	
		<i>I</i> =	nAle/t = nAve therefore $v = I/nAe$		A1	[3]
	(c)	(i)	ratio = $(I/nA_Ye)/(I/nA_Ze)$		C1	
			= A_Z/A_Y or $4A/A$ or $\pi d^2/(\pi d^2/4)$		C1	
			= 4		A1	[3]
		(ii)	$R = \rho l / A$ or $R = 4\rho l / \pi d^2$		B1	
			$R_{\rm Y} = \rho l/A \text{ and } R_{\rm Z} = \rho(2l)/4A$ so $R_{\rm Y}/R_{\rm Z} = 2$			
			$R_{\rm Y} = 4\rho l / \pi d^2 {\rm and} R_{\rm Z} = 4\rho (2l) / \pi 4d^2 {\rm or} 2\rho l / \pi d^2 {\rm so} R_{\rm Y} / R_{\rm Z} = 2$		A1	[2]
		(iii)	$V = 12R_Y / (R_Y + R_Z)$ or $I = 12 / (R_Y + R_Z)$ and $V = IR_Y$		C1	
			$V = 12 \times 2/3$			
			= 8(.0) V		A1	[2]
		(iv)	ratio = $I^2 R_Y / I^2 R_Z$ or $(V_Y^2 / R_Y) / (V_Z^2 / R_Z)$ or $(V_Y I) / (V_Z I)$			
			= 2		A1	[1]

Page 6	5	Mark Scheme		Paper	
		Cambridge International AS/A Level – May/June 2016	9702	21	
7 (a)	ha <i>an</i> Ier	dron: neutron/proton d pton: electron/(electron) neutrino		B1	[1]
	(al	low other correct particles)		51	[,]
(b)	(i)	proton: up up down or uud		B1	[1]
	(ii)	neutron: up down down or udd		B1	[1]
(c)	(i)	neutron \rightarrow proton + electron + (electron) antineutrino		B1	[1]
	(ii)	up down down (quarks) change to up up down (quarks) or			
		down (quark) changes to up (quark)		B1	[1]