CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper	
	Cambridge International AS/A Level – October/November 2015	9702	42	
Section A				

1 (a) (i) gravitational force provides/is the centripetal force В1 $GMm_S/x^2 = m_S v^2/x$ (allow x or r, allow m or m_S) M1 $E_{\rm K} = \frac{1}{2}m_{\rm S}v^2$ and clear algebra leading to $E_{\rm K} = GMm_{\rm S}/2x$ Α1 [3] (ii) $E_P = -GMm_S/x$ (sign essential) **B1** [1] (iii) $E_T = E_K + E_P$ $= GMm_S/2x - GMm_S/x$ C1 $= -GMm_S/2x$ (allow ECF from (a)(ii)) Α1 [2] (b) (i) decreases **B1** [1] **B1** (ii) decreases [1] (iii) decreases **B1** [1] (iv) increases B1 [1] (for answers in (b) allow ECF from (a)(iii)) 2 (a) obeys the equation pV = nRT or pV/T = constantM1 all symbols explained; T in kelvin/thermodynamic temperature **A1** [2] (b) (i) temperature rise = 48 K **A1** [1] (ii) $\langle c^2 \rangle \propto T$ or equivalent C1 $\langle c^2 \rangle = (353/305) \times 1.9 \times 10^6$ C1 $c_{\rm rms} = 1480 \,\rm m \, s^{-1}$ **A1** [3] 3 (a) heat/thermal energy gained by system or energy transferred to system by heating B1 plus work done on the system or minus work done by the system **B**1 [2] (b) (i) either volume decreases so work done on the system M1 or small volume change so work done on system negligible (thermal) energy absorbed to break lattice structure M1 internal energy increases Α1 [3] M1 (ii) gas expands so work done by gas (against atmosphere) no time for thermal energy to enter or leave the gas M1 [3] internal energy decreases **A1** (a) free: (body oscillates) without any loss of energy/no resistive forces/no external **B1** forces applied

B1

[2]

forced: continuous energy input (required)/body is made to vibrate by an

(external) periodic force/driving oscillator

P	age (Mark Scheme Syllabus Cambridge International AS/A Level – October/November 2015 9702	Pape	
	(b)	(i)	idea of resonance maximum amplitude at natural frequency frequency = 2.1 Hz (allow 2.08 to 2.12 Hz)	B1 B1 B1	[3]
		(ii)	peak not very sharp/amplitude not infinite so frictional forces are present	B1	[1]
	(c)		= ωx_0 = $2\pi \times 2.1 \times 4.7 \times 10^{-2}$ (allow ECF from (b)(i)) = $0.62 \mathrm{m s^{-1}}$	C1 A1	[2]
5	(a)	(i)	force proportional to the product of the two/point charges and inversely proportional to the square of their separation	B1 B1	[2]
		(ii)	1. force radially away from sphere/to right/to east	B1	[1]
			2. (maximum) at/on surface of sphere $or x = r$	B1	[1]
			3. $F \propto 1/x^2 \text{ or } F = q_1 q_2/(4\pi \varepsilon_0 x^2)$	C1	
			ratio = 16	A1	[2]
	(b)	E=	$= q/(4\pi\varepsilon_0 x^2) \text{ or } E \propto q$	C1	
		ma	ximum charge = $(2.0/1.5) \times 6.0 \times 10^{-7}$ = 8.0×10^{-7} C	C1	
		ade	ditional charge = 2.0 × 10 ⁻⁷ C	A1	[3]
6	(a)	(i)	force = mg along the direction of the field/of the motion	M1 A1	[2]
		(ii)	no force	B1	[1]
	(b)	(i)	force due to <i>E</i> -field downwards so force due to <i>B</i> -field upwards into the plane of the paper	B1 B1	[2]
		(ii)	force due to magnetic field = Bqv force due to electric field = Eq (use of F_B and F_E not explained, allow 1/2)	B1 B1	
			forces are equal (and opposite) so $Bv = E$ or $Eq = Bqv$ so $E = Bv$	B1	[3]
	(c)		etch: smooth curved path upward' direction	M1 A1	[2]
7	(a)	for	nimum frequency of e.m. radiation/a photon (not "light") emission of electrons from a surface ference to light/UV rather than e.m. radiation, allow 1/2)	M1 A1	[2]

P	age 4		Mark Scheme	Syllabus	Pap	
		(Cambridge International AS/A Level – October/November 2015	9702	42	
	(b)		$_{ m ix}$ corresponds to electron emitted from surface ctron (below surface) requires energy to bring it to surface, so less t	han E _{MAX}	B1 B1	[2]
	(c)	(i)	$1/\lambda_0 = 1.85 \times 10^6$ (allow 1.82 to 1.88)		C1	
		(ii)	$f_0 = c/\lambda_0$ = 3.00 × 10 ⁸ × 1.85 × 10 ⁶ = 5.55 × 10 ¹⁴ Hz $\Phi = hf_0$		A1	[2]
			= $6.63 \times 10^{-34} \times 5.55 \times 10^{14}$ (allow ECF from (c)(i)) = 3.68×10^{-19} J		C1 A1	[2]
	(d)		tch: straight line with same gradient ercept between 1.0 and 1.5		M1 A1	[2]
8	(a)	nuc	cleus: <u>small</u> central part/core of an atom cleon: proton or a neutron ticle contained within a nucleus		B1 B1 B1	[3]
	(b)	(i)	1. decay constant = $\ln 2/(3.8 \times 24 \times 3600)$ = $2.1 \times 10^{-6} \text{s}^{-1}$		C1 A1	[2]
			2. $A = \lambda N$ $97 = 2.1 \times 10^{-6} \times N$ $N = 4.6 \times 10^{7}$		C1 A1	[2]
		(ii)	1.0m^3 contains (6.02 \times $10^{23})/(2.5\times10^{-2})$ air molecules		C1	
			ratio = $(4.6 \times 10^7 \times 2.5 \times 10^{-2})/(6.02 \times 10^{23})$ = 1.9×10^{-18}		A1	[2]

	Cambridge International AS/A Level – October/November 2015	9702	42	
	Section B			
9	(a) (i) (+) 3.0 V		B1	[1]
	(ii) potential = $6.0 \times \{2.0 / (2.0 + 2.8)\}$ = 2.5 V		C1 A1	[2]
	(iii) potential = $6.0 \times \{2.0 / (2.0 + 1.8)\}$ = 3.2 V		A1	[1]
	(b) at 10 °C, $V_A > V_B$ V_{OUT} is -9.0 V (allow "negative saturation")		M1 A1	
	at 20 °C, V_{OUT} is +9.0 V (if 20 °C considered initially, mark as M1,A1,B1)		B1	
	sudden switch (from -9 V to $+9 \text{ V}$) when $V_A = V_B$		B1	[4]
10	(a) sharpness: clarity of edges/resolution (of image) contrast: difference in degree of blackening (of structures)		B1 B1	[2]
	(b) (i) X-rays produced when (high speed) electrons hit target/anode either electrons have been accelerated through 80 kV or electrons have (kinetic) energy of 80 keV		B1 B1	[2]
	(ii) $I_T/I = e^{-3.0 \times 1.4}$ = 0.015		C1 A1	[2]
	(c) for good contrast, μx or $e^{\mu x}$ or $e^{-\mu x}$ must be very different μx or $e^{\mu x}$ or $e^{-\mu x}$ for bone and muscle will be different than that for musc so good contrast	le	B1 M1 A1	[3]
11	(a) frequency of carrier wave varies in synchrony with the displacement of the signal/information wave		M1 A1	[2]
	(b) (i) 5.0 V		A1	[1]
	(ii) 720 kHz		A1	[1]
	(iii) 780 kHz		A1	[1]

Mark Scheme

Syllabus

Paper

[1]

Α1

Page 5

(iv) 7500

Page 6		6	Mark Scheme	Syllabus	Pap	er
		(Cambridge International AS/A Level – October/November 2015	9702	42	
12	(a)	(i)	(gradual) loss of power/intensity/amplitude (not "signal")		B1	[1]
		(ii)	e.g. noise can be eliminated (not "there is no noise") because pulses can be regenerated		M1 A1	
			e.g. much greater data handling/carrying capacity because many messages can be carried at the same time/grea	ıter	M1	
			bandwidth		A1	
			e.g. more secure because it can be encrypted		(M1) (A1)	
			e.g. error checking because extra information/parity bit can be added		(M1) (A1)	[4]
			(allow any two sensible suggestions with 'state' M1 and 'explain' A1	')		
	(b)	atte	enuation = 10 lg (145/29) (= 7.0)		C1	
		atte	enuation per unit length = 7.0/36 = 0.19 dB km ⁻¹		A1	[2]