MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2							Paper		
			Cam	bridge Internation	nal AS	A Level – October/November 2015	9702	23	
1	(a)	or		or <i>W</i> : kg m ² s ⁻² r <i>P</i> : kg m ² s ⁻³				M1	
			intensity or <i>I</i> : kg m ² s ⁻² m ⁻² s ⁻¹ (from use of energy expression)						
			or kg m ² s ⁻³ m ⁻² (from use of power expression)						
		indication of simplification to $kg s^{-3}$						A1	[2]
	(b)	(i)	<i>ρ</i> : k	g m ⁻³ , <i>c</i> : m s ⁻¹ , <i>f</i> : s	s^{-1}, x_0 :	m		M1	
				stitution of terms in no units	n an ap	ppropriate equation and simplification t	o show <i>K</i>	A1	[2]
		(ii)	I =	20 × 1.2 × 330 × (2	260) ² ×	$(0.24 \times 10^{-9})^2$		C1	
			=	$3.1 \times 10^{-11} \ (W \ m^{-2})$)			C1	
			=	31 (30.8)pW m ⁻²				A1	[3]
2	(a)	(i)	(the	loudspeakers) are	e conn	ected to the same signal generator		B1	[1]
		(ii)	1.	the waves (that or of zero and so	verlap)	have phase difference of zero or path	difference		
					either or	constructive interference displacement larger		B1	[1]
			2.	$(n + \frac{1}{2}) \times 2\pi$ rad c	or path	have phase difference of $(n + \frac{1}{2}) \times 36$ difference of $(n + \frac{1}{2})\lambda$ and so destructive interference displacements cancel/smaller	60° or	B1	[1]
			3.	or $2\pi n$ rad or path	n differe	are in phase or have phase difference ence of $n\lambda$ and so constructive interference	e of <i>n</i> 360°		
					or	displacement larger		B1	[1]
	(b)	tim	e pe	riod = 0.002s or 2r	ms			C1	
		wave drawn is half time period					B1		
		amplitude 1.0 cm (same as Fig. 2.2)					B1	[3]	

Pa	age (Syllabus		
C		Cam	bridge International AS/A Level – October/November 2015	9702	23	6	
3	(a)	(i)	1.	$s = ut + \frac{1}{2}at^2$			
				$192 = \frac{1}{2} \times 9.81 \times t^2$		C1	
				t = 6.3 (6.26) s		A1	[2
			2.	max $E_{\rm k}$ (= mgh) = 0.27 × 9.81 × 192		C1	
				or			
				calculation of v (= 61.4) and use of $E_{\rm K}$ (= ½ mv^2) = ½ × 0.27 ×	(61.4) ²	(C1)	
				max <i>E</i> _k = 510 (509) J		A1	[2
		(ii)	vel	ocity is proportional to time or velocity increases at a constant r	ate		
			as	acceleration is constant or resultant force is constant		B1	[1
		(iii)	use	e of $v = at$ or $v^2 = 2as$ or $E = \frac{1}{2}mv^2$ to give $v = 61(.4) \text{ m s}^{-1}$		B1	[1
		. ,					
	(b)	(i)	Ri	ncreases with velocity		B1	
			res	sultant force is $mg - R$ or resultant force decreases		B1	
			aco	celeration decreases		B1	[3
		(ii)	at	$v = 40 \mathrm{ms^{-1}}, R = 0.6 \mathrm{(N)}$		C1	
			0.2	$27 \times 9.8 - 0.6 = 0.27 \times a$			
			a =	$= 7.6 (7.58) \mathrm{ms}^{-2}$		A1	[2
		(iii)	R =	= weight for terminal velocity		B1	
			eitl or	<i>her</i> weight requires velocity to be about 80 m s^{-1} at 60 m s^{-1} , <i>R</i> is less than weight			
			SO	does not reach terminal velocity		B1	[2
	(a)	(i)	rea	action/vertical force = weight – $P \cos 60^\circ$		C1	
				= 180 – 35 cos 60°			
				= 160 (163)N		A1	[2
		(ii)	wo	rk done = 35 sin $60^{\circ} \times 20$		C1	
				= 610 (606) J		A1	[2

Page 4			Mark Scheme Syllabus			
		0	Cambridge International AS/A Level – October/November 2015 97	/02	23	
	(b)	(i)	work done by force <i>P</i> = work done against frictional force		B1	[1]
		(ii)	horizontal component of <i>P</i> is equal and opposite to frictional force		B1	
			vertical component of P + normal reaction force equal and opposite to w	reight	B1	[2]
5	(a)	(i)	resistance = V/I		B1	
			very high/infinite resistance at low voltages		B1	
			resistance decreases as V increases		B1	[3]
		(ii)	p.d. from graph 0.50(V)		C1	
			resistance = $0.5/(4.4 \times 10^{-3})$			
			= 110 (114) Ω		A1	[2]
	(b)	(i)	current (= $1.2/375$) = 3.2×10^{-3} A		A1	[1]
		(ii)	current in diode = 4.4×10^{-3} (A) total resistance = $1.2/4.4 \times 10^{-3}$ = 272.7 (Ω)		C1	
			resistance of $R_1 = 272.7 - 113.6 = 160 (159)\Omega$		A1	
			or			
			p.d. across diode = $0.5 V$ and p.d. across $R_1 = 0.7 V$	(0	C1)	
			resistance of R ₁ = $0.7/4.4 \times 10^{-3}$ = 160 (159) Ω	(<i>F</i>	\ 1)	[2]
		(iii)	power = IV or I^2R or V^2/R		C1	
			ratio = $(4.4 \times 0.5)/(3.2 \times 1.2)$ or $[(4.4)^2 \times 114]/[(3.2)^2 \times 375]$ or $[(0.5)^2 \times 375]/[114 \times (1.2)^2]$			
			= 0.57		A1	[2]
6	(a)	wa	ves from loudspeaker (travel down tube and) are reflected at closed end		B1	
			waves (travelling) in opposite directions with same frequency/wavelengt erlap		B1	[2]
	(b)	(i)	0.51 m 0.85 m		A1 A1	[2]
		(ii)	A at open end, N at closed end, with an N and A in between, equally spa (by eye)		B1	[1]

Page \$			Mark Scheme	Syllabus	Paper	
		(Cambridge International AS/A Level – October/November 2015	9702 23		
7	(a)	stre	ess or $\sigma = F/A$		C1	
		ma	x. tension = UTS × A = $4.5 \times 10^8 \times 15 \times 10^{-6}$ = 6800 (6750)N		A1	[2]
	(b)	ρ=	m/V		C1	
			ght = $mg = \rho Vg = \rho ALg$ 50 = 7.8 × 10 ³ × 15 × 10 ⁻⁶ × L × 9.81		C1	
		L =	$5.9(5.88) \times 10^3 \mathrm{m}$		A1	
		or				
		ma	ximum mass = 6750/9.81 = 688 kg ss per unit length = ρA = 0.117 kg m ⁻¹ 688/0.117 = 5.9 × 10 ³ m		(C1) (C1) (A1)	
		or				
		vol	ximum mass = $6750/9.81 = 688 \text{ kg}$ ume = $m/\rho = 0.0882 \text{ m}^3 = LA$ $0.0882/15 \times 10^{-6} = 5.9 \times 10^3 \text{ m}$		(C1) (C1) (A1)	[3]
8	(a)	pro	ss-energy ton number or charge cleon number		B2	[2]
	(b)	(i)	$E_{\rm k} = \frac{1}{2} mv^2$ and $p = mv$ with working leading to			
			[via $E_{\rm k} = \frac{1}{2} \frac{m^2 v^2}{m}$ or $\frac{1}{2} m (p/m)^2$]			
			to $E_{\rm k} = \frac{p^2}{2m}$		B1	[1]
		(ii)	$p = (2E_km)^{\frac{1}{2}}$ hence $(2[E_km]_{\alpha})^{\frac{1}{2}} = (2[E_km]_{Th})^{\frac{1}{2}}$		C1	
			$2 \times [E_k]_{Th} \times 234 = 2 \times 6.69 \times 10^{-13} \times 4$		C1	
			$[E_k]_{Th} = 1.14 \times 10^{-14} \text{ J}$ = 71(.5) keV		A1	
			or			
			calculation of speed of α -particle = $1.42 \times 10^7 m s^{-1}$ calculation of momentum of α -particle/nucleus = $9.43 \times 10^{-20} N s$		(C1)	
			$[E_k]_{Th} = 1.14 \times 10^{-14} \text{ J} \\= 71(.5) \text{ keV}$		(C1) (A1)	[3]