CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9702	41

Section A

1	(a)	(gravitational) force proportional to product of masses and inversely proportional to square of separation reference to <i>either</i> point masses <i>or</i> particles <i>or</i> 'size' much less than separation	M1 A1	[2]	
	(b)	gravitational force provides/is the centripetal force $GM_{\rm N}m/r^2=mr\omega^2$ (or mv^2/r) $2\pi/T$ (or $v=2\pi r/T$) leading to $GM_{\rm N}=4\pi^2 r^3/T^2$	B1 M1 A1	[3]	
	(c)	$M_{\rm N}/M_{\rm U} = (3.55/5.83)^3 \times (13.5/5.9)^2$ x^3 factor correct T^2 factor correct ratio = 1.18 (allow 1.2)			
		alternative method: mass of Neptune = 1.019×10^{26} kg mass of Uranus = 8.621×10^{25} kg ratio = 1.18	(C1) (C1) (A1)	[3]	
2	(a)	(sum of) potential energy and kinetic energy of molecules/atoms/particles mention of random motion/distribution	M1 A1	[2]	
	(b)	(i) $pV = nRT$ either at A, $1.2 \times 10^5 \times 4.0 \times 10^{-3} = n \times 8.31 \times 290$ or at B, $3.6 \times 10^5 \times 4.0 \times 10^{-3} = n \times 8.31 \times 870$ n = 0.20 mol	C1 A1	[2]	
		(ii) $1.2 \times 10^5 \times 7.75 \times 10^{-3} = 0.20 \times 8.31 \times T \text{ or } T = (7.75/4.0) \times 290$ T = 560 K (Allow tolerance from graph: $7.7 - 7.8 \times 10^{-3} \text{ m}^3$)	C1 A1	[2]	
	(c)	temperature changes/decreases so internal energy changes/decreases volume changes (at constant pressure) so work is done	B1 B1	[2]	
3	(a)	(numerically equal to) quantity of (thermal) energy/heat to change state/phase of unit mass at constant temperature (allow 1/2 for definition restricted to fusion or vaporisation)	M1 A1	[2]	
	(b)	(i) at 70 W, mass $s^{-1} = 0.26 g s^{-1}$ at 110 W, mass $s^{-1} = 0.38 g s^{-1}$	A1 A1	[2]	

Page 3		Mark Scheme		Paper	
		Cambridge International AS/A Level – May/June 2015	9702	41	
	(ii)	(110 - 70) = (0.38 - 0.26)L $L = 330 \mathrm{J}\mathrm{g}^{-1}$		C1 C1 A1	[3]
		2. either 70 + h = 0.26 × 330 or 110 + h = 0.38 × 330 h = 17/16/15 W		C1 A1	[2]
4	(a) (i	frequency at which object is made to vibrate/oscillate		B1	[1]
	(ii)	frequency at which object vibrates when free to do so		B1	[1]
	(iii)	maximum amplitude of vibration of oscillating body when forced frequency equals natural frequency (of vibration)		B1 B1	[2]
	(b) e.	g. vibration of quartz/piezoelectric crystal (what is vibrating) either for accurate timing		M1	
		or maximise amplitude of ultrasound waves (why it is useful)		A1	[2]
	(c) e.	g. vibrating metal panels (what is vibrating)		M1	
		either place strengthening struts across the panel or change shape/area of panel (how it is reduced)		A1	[2]
5	(a)	(magnitude of electric field strength is the potential gradient use of gradient at $x = 4.0 \text{cm}$ gradient = $4.5 \times 10^4 \text{N C}^{-1}$ (allow $\pm 0.3 \times 10^4$)		B1 M1 A1	
		or			
		$V = \frac{Q}{4\pi\epsilon_0 x}$ and $E = \frac{Q}{4\pi\epsilon_0 x^2}$ leading to $E = \frac{V}{x}$		(B1)	
		$E = 1.8 \times 10^{3}/0.04$ = $4.5 \times 10^{4} \mathrm{N}\mathrm{C}^{-1}$		(M1) (A1)	[3]
	(b) (i)	$3.6 \times 10^3 \text{V}$		A1	[1]
	(ii)	capacitance = Q/V = $(8.0 \times 10^{-9})/(3.6 \times 10^{3})$		C1	
		$= 2.2 \times 10^{-12} \mathrm{F}$		A1	[2]
6	(a) (i)	gravitational		B1	[1]
	(ii)	gravitational and electric		B1	[1]
	(iii)	magnetic and one other field given magnetic, graviational and electric		B1 B1	[2]

Pa	age 4	4		Syllabus	Pape	er
			Cambridge International AS/A Level – May/June 2015	9702	41	
	(b)	(i)	out of (plane of) paper/page (not "upwards")		B1	[1]
		(ii)	$B = mv/qr$ = $(3.32 \times 10^{-26} \times 7.6 \times 10^{4})/(1.6 \times 10^{-19} \times 6.1 \times 10^{-2})$ = 0.26 T		C1 C1 A1	[3]
	(c)	ske	etch: semicircle with diameter < 12.2 cm		B1	[1]
7	(a)		n change (output) voltage efficiently <i>or</i> to suit different consumers/appusing transformers	oliances	B1 B1	[2]
	(b)	for	same power, current is smaller		B1	
		or t	s heating in cables/wires hinner cables possible ess voltage loss in cables		B1	[2]
8	(a)	•	$p = h/\lambda$ = (6.63 × 10 ⁻³⁴)/(6.50 × 10 ⁻¹²) = 1.02 × 10 ⁻²² Ns		C1 A1	[2]
		(11)	$E = hc/\lambda \text{ or } E = pc$ = $(6.63 \times 10^{-34} \times 3.00 \times 10^{8})/(6.50 \times 10^{-12})$ = $3.06 \times 10^{-14} \text{ J}$		C1 A1	[2]
	(b)	(i)	$0.34 \times 10^{-12} = (6.63 \times 10^{-34})/(9.11 \times 10^{-31} \times 3.0 \times 10^{8}) \times (1 - \cos \theta)$ $\theta = 30.7^{\circ}$		C1 A1	[2]
		(ii)	deflected electron has energy this energy is derived from the incident photon deflected photon has less energy, longer wavelength (so $\Delta\lambda$ always	positive)	M1 A1 B1	[3]
9	(a)	spc	cleus/nuclei emits ontaneously/randomly particles, β -particles, γ -ray photons		M1 A1 A1	[3]
	(b)	(i)	$N - \Delta N$		A1	[1]
		(ii)	$\Delta N/\Delta t$		A1	[1]
		(iii)	$\Delta N/N$		A1	[1]
		(iv)	$\Delta N/N\Delta t$		A1	[1]
	(c)	_	ph: smooth curve in correct direction starting at (0,0) t $2t_{1/2}$ is 1.5 times that at $t_{1/2}$ (\pm 2 mm)		M1 A1	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9702	41

Section B

10 (a) (i) (potential =)
$$1.2/(1.2 + 4.2) \times 4.5 = +1.0 \text{V}$$

(ii) (for $V_{\text{IN}} > 1.0 \text{V}$) $V^{*} > V^{*}$ output (of op-amp) js $+5 \text{V}$ or positive diode conducts giving $+5 \text{V}$ across R or V_{out} is $+5 \text{V}$

(for $V_{\text{IN}} < 1.0 \text{V}$) output of op-amp -5V /negative so diode does not conduct, giving $V_{\text{out}} = 0$ or 0V across R or V_{out} is $+5 \text{V}$

(b) (i) square wave with maximum value $+5 \text{V}$ and minimum value 0 vertical sides in correct positions and correct phase

A1 [2]

(ii) re-shaping (digital) signals/regenerator (amplifier)

B1 [1]

11 (a) change/increase/decrease anode/tube voltage electrons striking anode have changed (kinetic) energy/speed B1 X-ray/photons/beam have different wavelength/frequency

B1 [3]

(b) (i) $I = I_0 e^{-\mu x}$

B1 [1]

(ii) contrast is difference in degree of blackening (of regions of the image) μ (very) similar so similar absorption of radiation (for same thickness) so little contrast

12 (a) (i) loudspeaker/doorbell/telephone etc.

B1 [1]

(b) e.g. lower attenuation/fewer repeaters more secure less prone to noise/interference physically smaller/less weight lower cost greater bandwidth (any two sensible suggestions, 1 each)

(c) (i) ratio = $25 + (62 \times 0.21)$ = 38.48

(ii) ratio / dB = $10 \log(P_2/P_1)$ 38 = $10 \log(P_3/P_1)$ 38 = $10 \log(P_3/P_1)$ 27 (21 (21 (21 (21 (21 (22 \text{ of missing 10 in equation)})

Page	6	Mark Scheme	Syllabus	Pap	er
		Cambridge International AS/A Level – May/June 2015	9702	41	
13 (a)) (i)	to align nuclei/protons to cause Larmor/precessional frequency to be in r.f. region		B1 B1	[2]
	(ii)	Larmor/precessional frequency depends on (applied magnetic) fie knowing field strength enables (region of precessing) nuclei to be by knowing the frequency	_	B1 M1 A1	[3]
(b)) <i>E</i> = 6.6	$ 2.82 \times 10^{-26} \times B $ $ 3 \times 10^{-34} \times 42 \times 10^{6} = 2.82 \times 10^{-26} \times B $		C1	
	B =	: 0.99 T		A 1	[2]