MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Pape	r		
				GCE A LEVEL – October/November 2013	9702	42			
		Section A							
1	(a)			ne in moving unit mass nity (to the point)		M1 A1	[2]		
	(b)	(b) (i) gravitational potential energy = GMm / x energy = $(6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 4.5) / (1.74 \times 10^{6})$ energy = 1.27×10^{7} J							
		(ii) <u>change in grav.</u> potential energy = <u>change in</u> kinetic energy							
				$4.5 \times v^2 = 1.27 \times 10^7$ $2.4 \times 10^3 \mathrm{m s^{-1}}$		A1	[2]		
	(c)	M1 A1	[2]						
2	(a)	(i)	<i>N</i> : (t	otal) number of <u>molecules</u>		B1	[1]		
		(ii)	< <i>c</i> ² >	: mean square speed/velocity		B1	[1]		
	(b)	, (me	ean) k	$lm < c^2 > = NkT$ sinetic energy = $\frac{1}{2}m < c^2 >$ clear leading to $\frac{1}{2}m < c^2 > = (3/2)kT$		C1 A1	[2]		
	(c)	(i)	eithe or	er energy required = $(3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02$ = 12.5 J (12J if 2 s.f.) energy = $(3/2) \times 8.31 \times 1.0$ = 12.5 J	× 10 ²³	C1 A1 (C1) (A1)	[2]		
		(ii)	atmo	rgy is needed to push back atmosphere/do w osphere otal energy required is greater	vork against	M1 A1	[2]		
3	(a)	(i)	any	two from 0.3(0) s, 0.9(0) s, 1.50 s (<i>allow 2.1 s etc.</i>)		B1	[1]		
		(ii)	eithe or	er $v = \omega x$ and $\omega = 2\pi/T$ $v = (2\pi/1.2) \times 1.5 \times 10^{-2}$ $= 0.079 \text{ m s}^{-1}$ gradient drawn clearly at a correct position working clear to give (0.08 ± 0.01) m s^{-1}		C1 M1 A0 (C1) (M1) (A0)	[2]		

Page 3			5	Mark Scheme	Syllabus	Pape	r
	-	J	GCE A LEVEL – October/November 2013 9702				
	(b)	(i)	i) sketch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable shape (<i>curved with both intersections between</i>			M1	
			A1	[2]			
		(ii)	 (ii) at max. amplitude potential energy is total energy total energy = 4.0 mJ 				[2]
4	(a)	(i)	 (i) force proportional to product of (two) charges and inversely proportional to square of separation reference to point charges 				
		(ii)	F = 2 = '	$2\times(1.6\times10^{-19})^2$ / $\{4\pi\times8.85\times10^{-12}\times(20\times10^{-6})^2\}$ 1.15 \times 10^{-18} N		C1 A1	[2]
	(b)	(i)	(i) force per unit charge on <i>either</i> a stationary charge				
				positive charge		A1	[2]
		(ii)		electric field is a vector quantity electric fields are in opposite directions charges repel			
				Any two of the above, 1 each		B2	[2]
				graph: line always between given lines crosses x-axis between 11.0 μ m and 12.3 μ m reasonable shape for curve		M1 A1 A1	[3]
5	(a)	(i)	field	shown as right to left		B1	[1]
		(ii) lines are more spaced out at ends			B1	[1]	
	(b)	Hall voltage depends on angle <i>either</i> between field and plane of probe <i>or</i> maximum when field normal to plane of probe <i>or</i> zero when field parallel to plane of probe				M1	
						A1	[2]
	(c)	(i)	of ch	uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage) w rate of cutting of flux)		M1 A1	[2]
		(ii)	-	move coil towards/away from solenoid rotate coil vary current in solenoid			
				insert iron core into solenoid three sensible suggestions, 1 each)		В3	[3]

	Page 4		Mark Scheme	Syllabus	Pape	r	
			GCE A LEVEL – October/November 2013	9702	42		
6	force	force due to magnetic field is constant force is (always) normal to direction of motion					
	this fo	this force provides the centripetal force					
	(b) <i>mv</i> ² / hence		Bqv / m = v / Br		M1 A0	[1]	
	(c) (i) q	q / m	$n = (2.0 \times 10^7) / (2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ = $1.8 \times 10^{11} \text{ C kg}^{-1}$		C1 A1	[2]	
	, , , , , , , , , , , , , , , , , , ,	bage	ch: curved path, constant radius, in direction toward e ent to curved path on entering and on leaving the field		M1 A1	[2]	
7	or co	either if light passes through suitable film / cork dust etc. diffraction occurs and similar pattern observed or concentric circles are evidence of diffraction diffraction is a wave property			M1 A1 (M1) (A1)	[2]	
	$\lambda = h,$ hence (spec or (spec $\lambda = h$	n/p se cial d ed in n / √(acreases so) momentum increases o λ decreases dii decrease case: wavelength decreases so radii decreases – scor acreases so) energy increases 2 <i>Em</i>) so λ decreases dii decrease	es 1/3)	M1 M1 A1 (B1) (M1) (A1)	[3]	
		rE=		C1 C1 C1 A1	[4]		
8		energy to separate nucleons (in a nucleus) separate to infinity			M1 A1	[2]	
	(b) (i) fi	fissio	on		B1	[1]	
	(ii) 1	1.	U: near right-hand end of line		B1	[1]	
	2	2.	Mo: to right of peak, less than 1/3 distance from peak	to U	B1	[1]	
	3	3.	La: 0.4 \rightarrow 0.6 of distance from peak to U		B1	[1]	

	Page 5		5	Mark Scheme	Syllabus	Paper		
				GCE A LEVEL – October/November 2013	9702	42		
		(iii)	1.	right-hand side, mass = 235.922 u mass change = 0.210 u		C1 A1	[2]	
			2.	energy = mc^2 = 0.210 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ² = 3.1374 × 10 ⁻¹¹ J = 196 MeV (<u>need 3 s.f.</u>) (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV, allow 2/3) (use of 1.67 × 10 ⁻²⁷ not 1.66 × 10 ⁻²⁷ scores max. 2/3)	MeV or 932	C1 C1 A1	[3]	
	Section B							
9	(a)	 operates on / takes signal from sensing device (so that) it gives an voltage output 					[2]	
	(b)	V_{OL}	_{JT} sho	or and resistor in series between +4 V line and earth own clearly across <i>either</i> thermistor <i>or</i> resistor own clearly across thermistor		M1 A1 A1	[3]	
	(c)		swit isola swit	ote switching ching large current by means of a small current ating circuit from high voltage ching high voltage by means of a small voltage/current o sensible suggestions, 1 each to max. 2)		B2	[2]	
10	(a)	pulse (of ultrasound) produced by quartz / piezo-electric crystal reflected from boundaries (between media) reflected pulse detected by the ultrasound transmitter signal processed and displayed intensity of reflected pulse gives information about the boundary (1) time delay gives information about depth (four B marks plus any two from the four, max. 6)(1)				B1 B1 B1 B1 B2	[6]	
	(b)	shorter wavelength smaller structures resolved / detected (<i>not more sharpness</i>)				B1 B1	[2]	
	(c)	(i)		$I_0 e^{-\mu x}$ $p = \exp(-23 \times 6.4 \times 10^{-2})$ = 0.23		C1 C1 A1	[3]	
		(ii)		r signal has passed through greater thickness of mediur has greater attenuation / greater absorption / smaller inte		M1 A1	[2]	

Page 6			i	Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	42	
11	(a)	left-	left-hand bit underlined				[1]
	(b)	 (b) 1010, 1110, 1111, 1010, 1001 (5 correct scores 2, 4 correct scores 1) 					[2]
	(c)	c) significant changes in detail of V between samplings so frequency too low					[2]
12	(a)	e.g. logarithm provides a smaller number gain of amplifiers is series found by addition, (not multiplication) (<i>any sensible suggestion</i>)				B1	[1]
	(b)	(i) optic fibre			B1	[1]	
		(ii) attenuation/dB = $10 \log(P_2/P_1)$ = $10 \log(\{6.5 \times 10^{-3}\}/\{1.5 \times 10^{-15}\})$ = 126					
			leng	th = 126 / 1.8 = 70 km		A1	[3]