MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper					
			GCE A LEVEL – October/November 2013	9702	41					
	Section A									
1	(a) wo	ork dor m infir	ne in moving unit mass nity (to the point)		M1 A1	[2]				
	(b) (i)	grav ener ener	itational potential energy = GMm / x rgy = (6.67 × 10 ⁻¹¹ × 7.35 × 10 ²² × 4.5) / (1.74 × 10 ⁶) rgy = 1.27 × 10 ⁷ J		M1 A0	[1]				
	(ii)	<u>char</u>	nge in grav. potential energy = <u>change in</u> kinetic energy	y	B1					
		$\frac{1}{2} \times v = 2$	$4.5 \times v^2 = 1.27 \times 10^{7}$ $2.4 \times 10^3 \text{ m s}^{-1}$		A1	[2]				
	(c) Ea / a es	irth wo t Earth cape s	ould attract the rock / potential at Earth('s surface) not z n, potential due to Moon not zero speed would be lower	zero / <0	M1 A1	[2]				
2	(a) (i)	<i>N</i> : (t	otal) number of <u>molecules</u>		B1	[1]				
	(ii)	<c²></c²>	: mean square speed/velocity		B1	[1]				
	(b) pV (m alç	⁄ = ⅓N ean) k gebra o	$lm < c^2 > = NkT$ sinetic energy = $\frac{1}{2} m < c^2 >$ clear leading to $\frac{1}{2} m < c^2 > = (3/2)kT$		C1 A1	[2]				
	(c) (i)	eithe or	er energy required = $(3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02$ = 12.5 J (12J if 2 s.f.) energy = $(3/2) \times 8.31 \times 1.0$ = 12.5 J	2 × 10 ²³	C1 A1 (C1) (A1)	[2]				
	(ii)	ener atmo so to	rgy is needed to push back atmosphere/do w osphere otal energy required is greater	vork against	M1 A1	[2]				
3	(a) (i)	any	two from 0.3(0) s, 0.9(0) s, 1.50 s (<i>allow 2.1 s etc.</i>)		B1	[1]				
	(ii)	eithe or	For $v = \omega x$ and $\omega = 2\pi/T$ $v = (2\pi/1.2) \times 1.5 \times 10^{-2}$ $= 0.079 \text{ m s}^{-1}$ gradient drawn clearly at a correct position working clear to give (0.08 ± 0.01) m s^{-1}		C1 M1 A0 (C1) (M1) (A0)	[2]				

	Page 3		6	Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013 9702		41	
(b)		(i)) sket	etch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable_shape_(<i>curved_with_both_intersections_between</i>			
				$y = 12.0 \rightarrow 13.0$		A1	[2]
		(ii)	at m total	ax. amplitude potential energy is total energy energy = 4.0 mJ		B1 B1	[2]
4	(a)	(i)	force prop refei	e proportional to product of (two) charges ar portional to square of separation rence to point charges	nd inversely	M1 A1	[2]
		(ii)	F = 2 =	$2\times(1.6\times10^{-19})^2$ / $\{4\pi\times8.85\times10^{-12}\times(20\times10^{-6})^2\}$ 1.15 \times 10^{-18} N		C1 A1	[2]
	(b)	(i)	force	e per unit charge		M1	
			on e	either a stationary charge		Δ1	[2]
			u a	positive charge		AI	[2]
		(ii)	1.	electric field is a vector quantity electric fields are in opposite directions charges repel			
				Any two of the above, 1 each		B2	[2]
			2.	graph: line always between given lines		M1	
				crosses x-axis between 11.0 μ m and 12.3 μ m reasonable shape for curve		A1 A1	[3]
5	(a)	(i)	field	shown as right to left		B1	[1]
		(ii)	lines	s are more spaced out at ends		B1	[1]
	(b)	Hal <i>eith</i>	l volta ner be	age depends on angle tween field and plane of probe		M1	
		or r or z	A1	[2]			
	(c)	(i)	(indu of ch (<i>allo</i>	uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage) w rate of cutting of flux)		M1 A1	[2]
		(ii)	e.g.	move coil towards/away from solenoid rotate coil			
			(any	vary current in solenoid insert iron core into solenoid v three sensible suggestions, 1 each)		B3	[3]

	Page 4		4 Mark Scheme GCE A LEVEL – October/November 2013		Syllabus 9702	Paper 41	
6	(a)	ford	ce du	e to magnetic field is constant		B1	
		this	forc	e provides the centripetal force		A1	[3]
	(b)	<i>mv</i> her	² / r = nce q	= Bqv / m = v / Br		M1 A0	[1]
	(c)	(i)	q / I	$m = (2.0 \times 10^{7}) / (2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ = $1.8 \times 10^{11} \text{ C kg}^{-1}$		C1 A1	[2]
		(ii)	ske pag tanç	tch: curved path, constant radius, in direction toward e gent to curved path on entering and on leaving the field	ds bottom of	M1 A1	[2]
7	(a)	eith or c	<i>er</i> if di conce diffrae	light passes through suitable film / cork dust etc. ffraction occurs and similar pattern observed entric circles are evidence of diffraction ction is a wave property		M1 A1 (M1) (A1)	[2]
	(b)	(sp) $\lambda =$ her (sp) α (sp) $\lambda =$ her	eed i <i>h/p</i> s nce ra ecial eed i <i>h</i> / v	ncreases so) momentum increases so λ decreases adii decrease <i>case: wavelength decreases so radii decreases – score</i> ncreases so) energy increases $(2Em)$ so λ decreases adii decrease	es 1/3)	M1 M1 A1 (B1) (M1) (A1)	[3]
	(c)	eleo eith rati	ctron ber E o = p = v = 2	and proton have same (kinetic) energy = $p^2 / 2m \text{ or } p = \sqrt{(2Em)}$ $p_e / p_p = \sqrt{(m_e / m_p)}$ $\{(9.1 \times 10^{-31}) / (1.67 \times 10^{-27})\}$ 2.3×10^{-2}		C1 C1 C1 A1	[4]
8	(a)	ene sep	ergy t parate	o separate nucleons (in a nucleus) e to infinity		M1 A1	[2]
	(b)	(i)	fiss	ion		B1	[1]
		(ii)	1.	U: near right-hand end of line		B1	[1]
			2.	Mo: to right of peak, less than 1/3 distance from peak t	to U	B1	[1]
			3.	La: 0.4 \rightarrow 0.6 of distance from peak to U		B1	[1]

	Page 5			Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	41	
		(iii)	1.	right-hand side, mass = 235.922 u mass change = 0.210 u		C1 A1	[2]
			2.	energy = mc^2 = 0.210 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ²		C1	
				= 3.1374×10^{-11} J = 196 MeV (<u>need 3 s.f.</u>) (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV, allow 2/3) (use of 1.67×10^{-27} not 1.66×10^{-27} scores max. 2/3)	MeV or 932	C1 A1	[3]
				Section B			
9	(a)	ope (so	rate: that)	s on / takes signal from sensing device it gives an voltage output		B1 B1	[2]
	(b)	thei V _{ou} V _{ou}	rmist ⊤ sho ⊤ sho	or and resistor in series between +4 V line and earth own clearly across <i>either</i> thermistor <i>or</i> resistor own clearly across thermistor		M1 A1 A1	[3]
	(c)	e.g. (<i>an</i>	rem swit isola swit y two	note switching teching large current by means of a small current ating circuit from high voltage teching high voltage by means of a small voltage/current to sensible suggestions, 1 each to max. 2)		В2	[2]
10	(a)	puls	se (o	f ultrasound) d by guartz / piezo-electric crystal	(1)	B1	
		refle	ecteo	d by quality plezo-electric crystal d from boundaries (between media) d pulse detected	(1)	B1 B1	
		by t sigr	he u nal pi nsitv	Itrasound transmitter rocessed and displayed of reflected pulse gives information about the boundary	(1)	B1	
		time (for	e del Ir B r	ay gives information about depth marks plus any two from the four, max. 6)	(1)	B2	[6]
	(b)	sho sma	rter v aller :	wavelength structures resolved / detected (<i>not more sharpness</i>)		B1 B1	[2]
	(c)	(i)	I = ratio	$I_0 e^{-\mu x}$ $p = \exp(-23 \times 6.4 \times 10^{-2})$ = 0.23		C1 C1 A1	[3]
		(ii)	late so h	r signal has passed through greater thickness of medium has greater attenuation / greater absorption / smaller inte	m ensity	M1 A1	[2]

	Pa	ge 6	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – October/November 2013	9702	41	
11	(a)	left-ha	nd bit underlined		B1	[1]
	(b)	1010, (5 cor	1110, 1111, 1010, 1001 rect scores 2, 4 correct scores 1)		A2	[2]
	(c)	signifi so fre	cant changes in detail of <i>V</i> between samplings quency too low		M1 A1	[2]
12	(a)	e.g. lo ga (<i>any</i> s	garithm provides a smaller number ain of amplifiers is series found by addition, (not multiplica ensible suggestion)	ition)	B1	[1]
	(b)	(i) o	otic fibre		B1	[1]
		(ii) at	tenuation/dB = 10 lg(P_2/P_1) = 10 lg({6.5 × 10 ⁻³ }/{1.5 × 10 ⁻¹⁵ }) = 126		C1 C1	
		le	ngth = 126 / 1.8 = 70 km		A1	[3]