

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICS			9702/33
Paper 3 Advanced Practical Skills 1			May/June 2013
			2 hours
Candidates and	swer on the Question Paper.		
Additional Mate	erials: As listed in the Confidential Instructions.		
. <u></u>			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer both questions.

You will be allowed to work with the apparatus for a maximum of one hour for each question. You are expected to record all your observations as soon as these observations are made, and to plan the presentation of the records so that it is not necessary to make a fair copy of them. You are reminded of the need for good English and clear presentation in your answers.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Additional answer paper and graph paper should be used only if it becomes necessary to do so.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

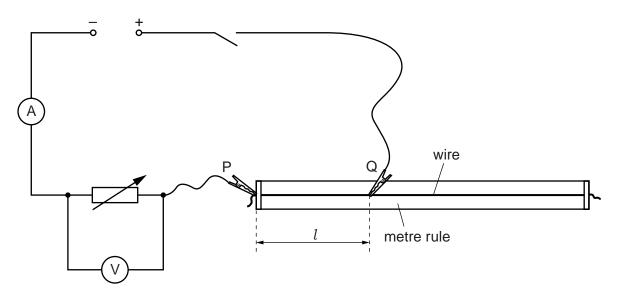
For Examiner's Use		
1		
2		
Total		

This document consists of **11** printed pages and **1** blank page.

You may not need to use all of the materials provided.

- 1 In this experiment, you will determine the resistivity of a metal in the form of a wire.
 - (a) (i) Measure and record the diameter *d* of the short sample of wire that is attached to the card. You may remove the wire from the card.

d =[1]


For Examiner's Use

(ii) Calculate the cross-sectional area A of the wire, in m^2 , using the formula

$$A=\frac{\pi d^2}{4}.$$

 $A = \dots m^2$

(b) (i) Using the wire attached to the metre rule, set up the circuit shown in Fig. 1.1.

There are two crocodile clips labelled P and Q. P will remain in the same position throughout the experiment. Q can be moved to different positions along the wire.

	(ii)	Position the slider approximately half-way along the rheostat (variable resistor).	For Examiner's
	(iii)	Attach Q approximately half-way along the wire.	
	(iv)	Switch on the power supply.	
	(v)	Measure and record the length l of wire between P and Q. Record the voltmeter reading V.	
		<i>l</i> = m	
		V =V [1]	
	(vi)	Record the ammeter reading <i>I</i> . (1 mA = 0.001 A)	
		/ = A	
	(vii)	Switch off the power supply.	
(c)	(i)	Reposition Q at a new distance l from P.	
	(ii)	Switch on the power supply.	
	(iii)	Adjust the slider on the rheostat until the ammeter reading is the same value as in (b)(vi) .	
	(iv)	Measure and record the length l of wire between P and Q. Record the voltmeter reading V.	
		<i>l</i> = m	
		V = V	
	(v)	Switch off the power supply.	

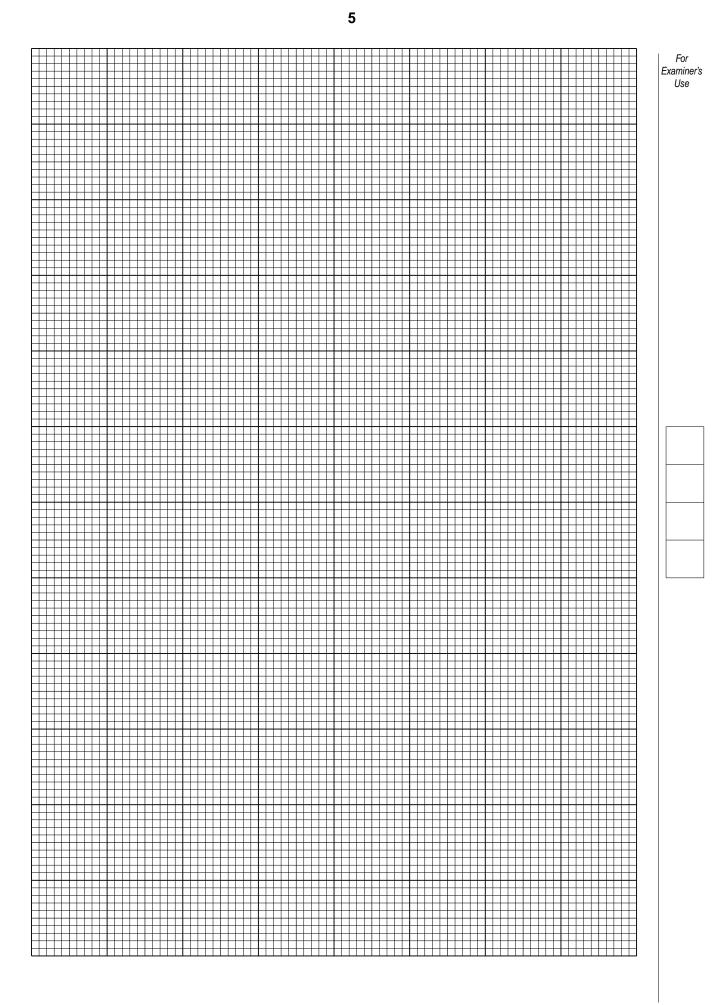
(d) Repeat (c) until you have six sets of readings of l and V.

For each value of *l*, adjust the slider on the rheostat so that the ammeter reading *Use*

You may find it helpful to copy your value from (b)(vi) here.

/ = A

Include values of $\frac{V}{l}$ and $\frac{1}{l}$ in your table.


[10]

For

(e)	(i)	Plot a graph of $\frac{V}{l}$ on the <i>y</i> -axis against $\frac{1}{l}$ on the <i>x</i> -axis.	[3]
	(ii)	Draw the straight line of best fit.	[1]

(iii) Determine the gradient and *y*-intercept of this line.

gradient =	
y-intercept =	

(f) The quantities V and l are related by the equation

$$\frac{V}{l} = \frac{M}{l} - N$$

where *M* and *N* are constants.

(i) Use your answers in (e)(iii) to determine values for *M* and *N*.

 $M = \dots V$ $N = \dots V m^{-1}$ For Examiner's Use

[1]

(ii) The resistivity ρ of the material of the wire, in Ω m, can be found using the relationship

$$\rho = \frac{NA}{I}.$$

Using your answers in (a)(ii), (b)(vi) and (f)(i), calculate a value for ρ .

 ρ = Ω m [1]

You may not need to use all of the materials provided.

- 2 In this experiment, you will investigate how the loss of gravitational potential energy of a rolling ball depends on its initial height.
 - (a) (i) Set up the two runways as shown in Fig. 2.1.

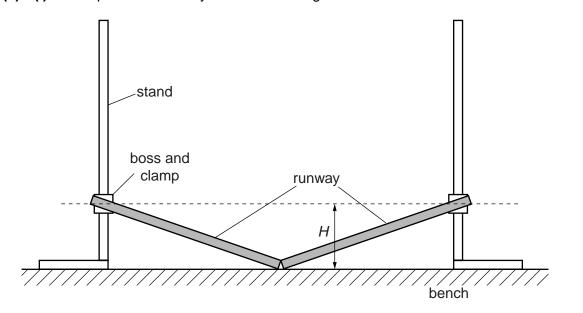
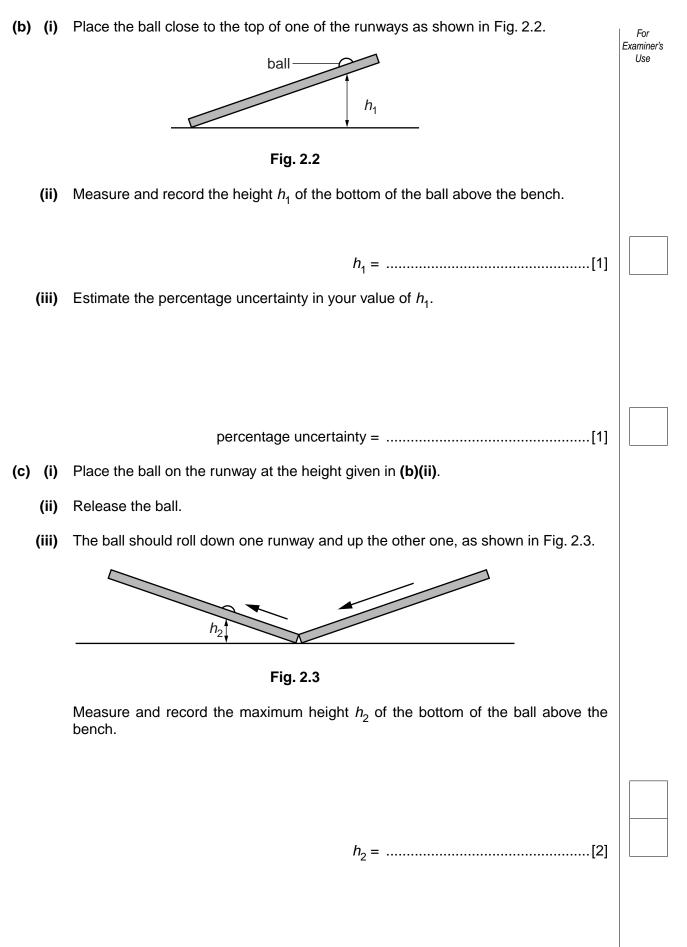
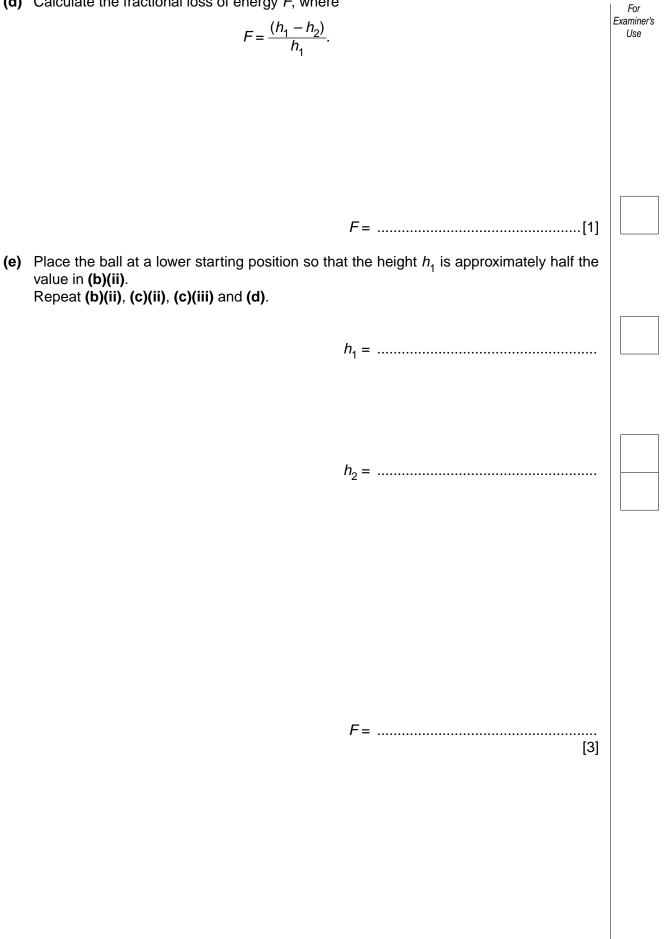


Fig. 2.1


One end of each runway should be resting on the bench. The other end should be clamped firmly at a height *H* approximately 15 cm above the bench.

The runways should be lined up so that a ball rolling down one would roll up the other.


(ii) Measure and record H.

H =[1]

For Examiner's Use

(d) Calculate the fractional loss of energy F, where

For Examiner's Use

(f)	It is suggested that the relationship between F and h_1 is	
	r-3 K	

$$F^3 = \frac{\kappa}{h_1}$$

where k is a constant.

(i) Using your data, calculate two values of *k*.

	first value of $k = \dots$	
	second value of $k = \dots$ [1]	
(ii)	Justify the number of significant figures that you have given for your values of <i>k</i> .	
	[1]	
(iii)	Explain whether your results in (f)(i) support the suggested relationship.	
	[1]	

(g)	(i)	Describe four sources of uncertainty or limitations of the procedure for this experiment.	For Examiner's Use
		1	Use
		2	
		3	
		4	
		[4]	
	(ii)	Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.	
		1	
		2	
		3	
		4	
		[4]	

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.