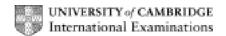
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/43


Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2010	9702	43

Section A

1 (a) (i) rate of change of angle / angular displacement M1 **A1** swept out by radius [2] (ii) $\omega \times T = 2\pi$ **B**1 [1] (b) centripetal force is provided by the gravitational force **B1** either $mr(2\pi/T)^2 = GMm/r^2$ or $mr\omega^2 = GMm/r^2$ M1 $r^3 \times 4\pi^2 = GM \times T^2$ **A1** $GM/4\pi^2$ is a constant (c) A1 $T^2 = cr^3$ A0 [4] (c) (i) either $T^2 = (45/1.08)^3 \times 0.615^2$ or $T^2 = 0.30 \times 45^3$ C1 T = 165 yearsΑ1 [2] (ii) speed = $(2\pi \times 1.08 \times 10^8) / (0.615 \times 365 \times 24 \times 3600)$ C1 $= 35 \text{ km s}^{-1}$ **A1** [2] 2 (a) atoms / molecules / particles behave as elastic (identical) spheres (1)volume of atoms / molecules negligible compared to volume of containing vessel (1)time of collision negligible to time between collisions (1) no forces of attraction or repulsion between atoms / molecules (1)atoms / molecules / particles are in (continuous) random motion (1)B4 (any four, 1 each) [4] **(b)** $pV = \frac{1}{3}Nm < c^2 >$ and pV = nRT or pV = NkT**B1** $\frac{1}{3}Nm < c^2 > = nRT$ or = NkT and $< E_K > = \frac{1}{2}m < c^2 >$ **B1** $n = N/N_A$ or $k = R/N_A$ **B1** $\langle E_K \rangle = \frac{3}{2} \times R/N_A \times T$ Α0 [3] (c) (i) reaction represents either build-up of nucleus from light nuclei M1 build-up of heavy nucleus from nuclei or so fusion reaction A1 [2] (ii) proton and deuterium nucleus will have equal kinetic energies **B**1 $1.2 \times 10^{-14} = \frac{3}{2} \times 8.31 / (6.02 \times 10^{23}) \times T$ C₁ $T = 5.8 \times 10^8 \,\mathrm{K}$ Α1 [3] (use of $E = 2.4 \times 10^{-14}$ giving 1.16×10^{9} K scores 1 mark)

proton and deuterium nucleus are positively charged / repel

B1

[1]

(iii) either inter-molecular / atomic / nuclear forces exist

or

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE A LEVEL – October/November 2010	9702	43	
3	(a) (i)	8.0	cm		A1	[1]
	(ii)	$2\pi f$ $f=3$	= 220 35 (condone unit)		C1 A1	[2]
	(iii)	line	drawn mid-way between AB and CD (allow ±2 i	mm)	B1	[1]
	(iv)		<i>ω</i> a 220 × 4.0		C1	
			880 cm s ⁻¹		A1	[2]
	(b) (i)		line drawn 3 cm above AB (allow ±2 mm) arrow pointing upwards		B1 B1	[1] [1]
	(ii)		line drawn 3 cm above AB (allow ±2 mm) arrow pointing downwards		B1 B1	[1] [1]
	(iii)	=	$e^{-\omega \sqrt{(a^2 - x^2)}}$ $e^{-220} \times \sqrt{(4.0^2 - 2.0^2)}$ $e^{-760} \text{ cm s}^{-1}$ correct value for x, 0/2 marks)		C1 A1	[2]
4	4 (a) (i)		k done moving unit positive charge n infinity to the point		M1 A1	[2]
	(ii)	char	rge / potential (difference) (ratio must be clear)		B1	[1]
	(b) (i)	capa	acitance = $(2.7 \times 10^{-6}) / (150 \times 10^{3})$		C1	
		(<i>allo</i>	Now any appropriate values) concitance = 1.8×10^{-11} (allow 1.8 ±0.05)		A1	[2]
	(ii)		er energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $Q = CV$		C1	
		energy = $\frac{1}{2} \times 1.8 \times 10^{-11} \times (150 \times 10^{3})^{2}$ or $\frac{1}{2} \times 2.7 \times 10^{-6} \times 150 \times 10^{3}$ = 0.20 J			A1	[2]
		(c) either since energy $\propto V^2$, capacitor has $(\frac{1}{2})^2$ of its energy left				
	<i>or</i> en		ull formula treatment ost = 0.15 J		C1 A1	[2]

Page 4		ge 4 Mark Scheme: Teachers' version		Paper	per	
		GCE A LEVEL – October/November 2010	9702	43		
5 (a)	magnetio	c flux = BA = $89 \times 10^{-3} \times 5.0 \times 10^{-2} \times 2.4 \times 10^{-2}$ = 1.07×10^{-4} Wb		C1 A1	[2]	
(b)			10 ⁻² s	C1 C1		
		$= 8.0 \times 10^{-3} \text{ V}$		A1	[3]	
	(ii) curre	ent = $8.0 \times 10^{-3} / 0.12$ $\approx 70 \text{ mA}$		M1 A0	[1]	
(c)	$= 89 \times 10^{-1}$ $\approx 3 \times 10^{-1}$	wire = BIL $0^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$ $^{-4}$ (N) comment e.g. this force is too / very small (to be felt)		C1 M1 A1	[3]	
6 (a)		neating depends on I^2 endent of current direction		M1 A1	[2]	
(b)	$I_0 = \sqrt{2} \times$	n power = 2 × average power		M1 M1	[3]	
7 (a)	force due Eq = Bqv v = E/B	e to <i>E</i> -field is <u>equal and opposite</u> to force due to <i>B</i> -field ⁄	l	B1 B1 B1	[3]	
(b)	or	charge and mass are not involved in the equation in (a $F_{\rm E}$ and $F_{\rm B}$ are both doubled E, B and v do not change viation	1)	M1 A1	[2]	
8 (a)		n frequency for electron to be emitted (from surface) omagnetic radiation / light / photons		M1 A1	[2]	
(b)	<i>either</i> th	λ or $E = hf$ and $c = f\lambda$ reshold wavelength = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (5.8 \times 10^{-34}) / (5.8 \times 10^{-34})$ rgy of 340 nm photon = 4.4×10^{-19} J	× 10 ^{–19})	C1		
	or thre or 450 appropria	eshold frequency = 8.7 × 10 ¹⁴ Hz nm → 6.7 × 10 ¹⁴ Hz ate comment comparing wavelengths / energies / frequenct fect on photo-electric current	uencies	A1 B1 B1	[4]	

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2010	9702	43

Section B

9	(a)	(i)	edges can be (clearly) distinguished	B1	[1]
		(ii)	e.g. size of X-ray source / anode / target / aperture scattering of X-ray beam pixel size (any two, 1 each) further detail e.g. use of lead grid	B2 B1	[3]
	(b)	CT rep	ay image involves a <u>single</u> exposure scan: exposure of a <u>slice</u> from many different angles eated for different slices scan involves a (much) <u>greater exposure</u>	B1 M1 A1 B1	[4]
10	(a)	J	infinite input impedance / resistance zero output impedance / resistance infinite gain infinite bandwidth infinite slew rate	D2	[2]
		(an	y three, 1 each)	В3	[3]
	(b)	(i)	with switch open, V^- is less (positive) than V^+ output is positive with switch closed, V^- is more (positive) than V^+ so output is negative (allow similar scheme if V^- more positive than V^+ treated first)	M1 A1 A1	[3]
		(ii)	 diodes connected correctly between output and earth green identified correctly (do not allow this mark if not argued in (i)) 	M1 A1	[2]
11	(a)	(i)	$I/I_0 = \exp(-1.5 \times 2.9)$ = 0.013	C1 A1	[2]
		(ii)	$I/I_0 = \exp(-4.6 \times 0.95)$ = 0.013	A1	[1]
	(b)	atte	enuation (coefficients) in muscle and in fat are similar enuation (coefficients) in bone and muscle / fat are different attenuation	B1 B1 B1	[3]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE A LEVEL – October/November 2010	9702	43	
12	(a) (i)		signal has same variation (with time) as the data consists of (a series of) 'highs' and 'lows' either analogue is continuously variable (between lim	nits)	B1 B1	
			or digital has no intermediate values		B1	[3]
	(ii)	Ū	can be regenerated / noise can be eliminated extra data can be added to check / correct transmitted two reasonable suggestions, 1 each)	ed signal	B2	[2]
	(b) (i)		logue signal is sampled at (regular time) intervals appled signal is converted into a binary number		B1 B1	[2]
	(ii)	one	channel is required for each bit (of the digital number)		B1	[1]