MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/42 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010			Syllabus	Pape	r			
			GCE AS	A LEVEL – Octo	bber/November	2010	9702	42			
	Section A										
1	(a) forc	a) force per unit mass (ratio idea essential)							[1]		
	(b) gra		ph: correct curvature from $(R, 1.0 g_s)$ & at least one other correct point								
	(c) (i)		fields of Earth and Moon are in opposite directions								
		<i>either</i> resultant field found by subtraction of the field strength <i>or</i> any other sensible comment so there is a point where it is zero (<i>allow</i> $F_E = -F_M$ for 2 marks)									
	(ii)		$GM_{\rm E} / x^2 = GM_{\rm M} / (D - x)^2$ (6.0 × 10 ²⁴) / (7.4 × 10 ²²) = x ² / (60R _E - x) ² x = 54 R _E								
	(iii)	(iii) graph: $g = 0$ at least $\frac{2}{3}$ distance to Moon g_E and g_M in opposite directions correct curvature (by eye) and $g_E > g_M$ at surface							[3]		
2	(a) (i)	no for	ces (of attr	action or repulsic	on) between atom	ns / mole	cules / particle	s B1	[1]		
	(ii)		sum of kinetic and potential energy of atoms / molecules due to random motion						[2]		
	(iii)	(rando	om) kinetic	energy increases	s with temperatur	е		M1			
		no potential energy (so increase in temperature increases internal energy)							[2]		
	(b) (i)	zero						A1	[1]		
	(ii)	work	done = $p\Delta$	V				C1			
		$= 4.0 \times 10^5 \times 6 \times 10^{-4}$ = 240 J (ignore any sign)							[2]		
	(iii)										
	. /	С	change work done / J heating / J increase in internal energy / J								
		L _			000						

			energy / e
$\begin{array}{c} P \to Q \\ Q \to R \\ R \to P \end{array}$	+240 0 -840	600 +720 +480	-360 +720 -360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	42	
3	(a)	(i)	resor	nance		B1	[1]
		(ii)	ampl	itude 16mm and frequency 4.6Hz		A1	[1]
	(b)	(i)	a =	$(-)\omega^2 x \text{ and } \omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ $13.4 \mathrm{m s^{-2}}$		C1 C1 A1	[3]
		(ii)	F =	<i>ma</i> 150 × 10 ^{−3} × 13.4		C1	
				2.0N		A1	[2]
	(c)			vs 'below' given line and never zero : 4.6 Hz (or slightly less) and flatter		M1 A1	[2]
4	(a)	cha	irge / j	potential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V = 0	$Q / 4\pi \varepsilon_0 r$		B1	[1]
		(ii)	C = (so C	$Q/V = 4\pi \varepsilon_0 r$ and $\frac{4\pi \varepsilon_0}{10}$ is constant $\propto r$		M1 A0	[1]
	(c)	(i)	r = (6	/ $4\pi\epsilon_0 r$ 5.8×10^{-12}) / ($4\pi \times 8.85 \times 10^{-12}$) × 10^{-2} m		C1 C1 A1	[3]
		(ii)	Q = ($CV = 6.8 \times 10^{-12} \times 220$ = 1.5 × 10 ⁻⁹ C		A1	[1]
	(d)	(i)	V = (= 83	$Q/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[1]
		(ii)	eithe	$\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	2	C1 C1	
			or	= $1.65 \times 10^{-7} - 6.2 \times 10^{-8}$ = 1.03×10^{-7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03×10^{-7} J		A1 (C1) (C1) (A1)	[3]

	Pa	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	42	
5	(a)	field	d into		B1	[1]	
	(b)		² / r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv 0 × 1.66 × 10 ⁻²⁷ × 1.40 × 10 ⁵) / (1.6 × 10 ⁻¹⁹ × 6.4 × 10 ⁻² 454 T	²)	B1 C1 B1 A0	[3]
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$		C1	
				$B = 0.499 \mathrm{T}$		A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(ii)	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)	(i)		value of the direct current producing same (mean) pov resistor	ver / heating	M1 A1	[2]
		(ii)	•	er in primary = power in secondary $P = V_S I_S$		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]
		(ii)	e.g.	photoelectric effect		B1	[1]
	(b)	(i)	6			A1	[1]
		(ii)	$\lambda = I$	nge in energy = 4.57 × 10^{-19} J hc / E .63 × 10^{-34} × 3.0 × 10^{8}) / (4.57 × 10^{-19})		C1	
			- (6. = 4.4	$4 \times 10^{-7} \mathrm{m}$		A1	[2]
8	(a)		-	of a heavy nucleus (<i>not atom/nuclide</i>) (lighter) nuclei of <u>approximately same mass</u>		M1 A1	[2]
	(b)	¹ n 42He 73Li		(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)			particles have kinetic energy	in rods /	B1	
		range of particles in the control rods is short / particles stopped in rods / lose kinetic energy in rods kinetic energy of particles converted to thermal energy				B1 B1	[3]

	Page 5			Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010	Syllabus 9702	Paper 42	-
				Section B			
9	(a)	(i)	non-	inverting (amplifier)		B1	[1]
		(ii)	(G =) 1 + R_2 / R_1		B1	[1]
	(b)	(i)	•	= 1 + 100 / 820 ut = 17 mV		C1 A1	[2]
		(ii)	(<i>R</i> ₂ / (1 +	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii) , (b)(i) and (b)(ii))	mark in (b)(ii)	A1	[1]
10	(a)	(i)	dens	sity × <u>speed of wave</u> (in the medium)		B1	[1]
		(ii)	ρ = =	(7.0 × 10 ⁶) / 4100 1700 kg m ⁻³		A1	[1]
	(b)	(i)	I = I	$T + I_R$		B1	[1]
		(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	[2]
			2. α	≈ 1		A1	[1]
	(c)	eith or		very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body		M1 M1 (M1) (M1) (A1)	[3]
11	(a)	(i)	unwa	anted random power / signal / energy		B1	[1]
		(ii)	loss	of (signal) power / energy		B1	[1]
	(b)	(i)	eithe	er signal-to-noise ratio at mic. = $10 \log (P_2 / P_1)$ = $10 \log (\{2.9 \times 10^{-6}\} / \{$	3 4 × 10 ⁻⁹ })	C1	
				= 29 dB maximum length = (29 – 24) / 12 = 0.42 km = 420 m		A1 C1 A1	[4]
			or	signal-to-noise ratio at receiver = 10 lg (P_2 / P_1) at receiver, 24 = 10 lg($P / \{3.4 \times 10^{-9}\}$) $P = 8.54 \times 10^{-7}$ W power loss in cables = 10 lg($\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-6}\}$	(0^{-7})	(C1) (A1) (C1)	
				= 5.3 dB = 440 m	.,	(A1)	

6	Syllabus	Paper	•		
G	CE AS	A LEVEL – October/November 2010	9702	42	
coupled to	the m	•		M1 A1	[2]
atellite receiv ignal amplifie t a different (d ifferent freque .g. of frequen	es grea d and t carrier) encies cies us	atly attenuated signal transmitted <u>back to Earth</u>) frequency prevent swamping of uplink signal sed (6/4 GHz, 14/11 GHz, 30/20 GHz)	(1) (1) (1) (1)	B1 B1 B2	[4]
dvantage: isadvantage:	e.g.	because orbits are much lower whole Earth may be covered in several orbits / with network <i>either</i> must be tracked <i>or</i> limited use in any one orbit		M1 A1 (M1) (A1) M1	[4]
	i) use an am coupled to (<i>repeater</i> a carrier wave) atellite receive gnal amplified t a different frequen wo <i>B1 marks</i> dvantage:	i) use an amplifier coupled to the m (repeater amplifi carrier wave) transm atellite receives greating ignal amplified and to t a different (carrier) ifferent frequencies us wo B1 marks plus a dvantage: e.g. e.g.	GCE AS/A LEVEL – October/November 2010 i) use an amplifier coupled to the microphone (repeater amplifiers scores no mark) carrier wave) transmitted from Earth to satellite atellite receives greatly attenuated signal ignal amplified and transmitted back to Earth t a different (carrier) frequency ifferent frequencies prevent swamping of uplink signal .g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) wo B1 marks plus any two other for additional physics) dvantage: e.g. much shorter time delay because orbits are much lower e.g. whole Earth may be covered in several orbits / with network isadvantage: e.g. either use to be tracked or limited use in any one orbit	GCE AS/A LEVEL – October/November 2010 9702 i) use an amplifier coupled to the microphone (repeater amplifiers scores no mark) carrier wave) transmitted from Earth to satellite (1) atellite receives greatly attenuated signal (1) ignal amplified and transmitted back to Earth t a different (carrier) frequency ifferent frequencies prevent swamping of uplink signal (1) .g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) (1) wo B1 marks plus any two other for additional physics) dvantage: e.g. much shorter time delay because orbits are much lower e.g. whole Earth may be covered in several orbits / with network isadvantage: e.g. either must be tracked	GCE AS/A LEVEL - October/November 2010 9702 42 i) use an amplifier coupled to the microphone (repeater amplifiers scores no mark) M1 A1 carrier wave) transmitted from Earth to satellite (repeater amplifiers scores no mark) M1 A1 carrier wave) transmitted from Earth to satellite (repeater amplified and transmitted back to Earth t a different (carrier) frequency B1 ginal amplified and transmitted back to Earth t a different (carrier) frequency B1 gifferent frequencies prevent swamping of uplink signal (1) (1) .g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) (1) wo B1 marks plus any two other for additional physics) B2 dvantage: e.g. much shorter time delay because orbits are much lower e.g. whole Earth may be covered in several orbits / with network (M1) (A1) isadvantage: e.g. either imited use in any one orbit M1