UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Mark Scheme: Teachers' version Syllabus Pa					
		GCE A LEVEL – October/November 2010	9702	23				
1	(a) allow 0.	$05\mathrm{mm} \rightarrow 0.15\mathrm{mm}$		B1	[1]			
	(b) allow 0.	25s → 0.5s		B1	[1]			
	(c) allow 8	$N \rightarrow 12 N$		B1	[1]			
	ignore number of significant figures							
2	crystalline:	long range order / orderly pattern (lattice) repeats itself long chain molecules / chains of monomers some cross-linking between chains / tangled chains	(1)(1)	B1 B1				
	•	disordered arrangement of molecules / atoms / particle any ordering is short-range arks plus any other 2 marks)	es (1)	B1 B2	[5]			
3	adjust c.r.o. measure ler frequency =	rophone / (terminals of) loudspeaker to Y-plates of c.r.c to produce steady wave of 1 (or 2) cycles / wavelength gth of cycle / wavelength λ and note time-base $b = 1 / \lambda b$ is measured as s cm ⁻¹ , unless otherwise stated)		B1 B1 M1 A1	[4]			
	(if statement is 'measure T , $f = 1/T$ then last two marks are lost)							
4	(a) accepta	ble straight line drawn (touching every point)		В1	[1]			
	` '	ance fallen is not <i>d</i> distance fallen plus the diameter of the ball		C1 A1	[2]			
	('d is no	t measured to the bottom of the ball' scores 2/2)						
		meter: allow 1.5 ± 0.5 cm (accept one SF) ecf from (a)		A1	[1]			
	gra	dient = 4.76, \pm 0.1 with evidence that origin has not beed dient = g / 2 9.5 m s ⁻²	en used	C1 C1 A1	[3]			

) (i)	Fig. 5.2	B1	[1]
(ii)	Fig. 5.3	B1	[1]
b) kinetic energy increases from zero then decreases to zero		B1	[1]
) (i)	$\Delta E_{\rm P} = mg\Delta h / mgh$ = 94 × 10 ⁻³ × 9.8 × 2.6 × 10 ⁻² using $g = 10$ then -1 = 0.024 J	C1 A1	[2]
(ii)		C1 C1	
	a = 0.018 m = 1.8 cm = 1.8 cm	A1	[3]
•	, , ,	B1 B1	[2]
) (i)	$\lambda = ax / D$ (if no formula given and substitution is incorrect then 0/3) $590 \times 10^{-9} = (1.4 \times 10^{-3} \times x) / 2.6$ $x = 1.1$ mm	C1 C1 A1	[3]
(ii)	1 . 180° (allow π if rad stated)	A1	[1]
	2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity \sim amplitude ² allow $I \sim a^2$ ratio = $3.4^2 / 0.6^2$	C1 C1	
	= 32	A1	[3]
) (i)	path: reasonable curve upwards between plates straight and at a tangent to the curve beyond the plates	B1 B1	[2]
(ii)	1 . (<i>F</i> =) <i>E</i> . <i>g</i>	B1	[1]
	2 . (t =) L / v	B1	[1]
(i) total momentum of a system remains constant or total momentum of a system before a collision equals total momentum after collision provided no external force acts on the system (do not accept 'conserved' but otherwise correct statement gets 1/2)		M1 A1	[2]
(ii)	$(\Delta p =) EqL/v$ allow ecf from (a)(ii)	B1	[1]
(iii)	either charged particle is not an isolated system so law does not apply or system is particle and 'plates' equal and opposite Δp on plates / so law applies	M1 A1 (M1) (A1)	[2]
	(ii) (ii) (ii) (ii) (ii) (ii) (iii)	 (ii) Fig. 5.3) kinetic energy increases from zero then decreases to zero (i) ΔE_P = mgΔh / mgh = 94 × 10⁻³ × 9.8 × 2.6 × 10⁻² using g = 10 then -1 = 0.024 J (ii) either 0.024 = ½ k × (2.6 × 10⁻²)² or ½ kd² = ½k × (2.6 × 10⁻²)² - ½kd² 0.012=½k × d² kd² - ½k × (2.6 × 10⁻²)² d = 0.018 m = 1.8 cm d = 0.018 m = 1.8 cm (ii) when two (or more) waves meet (at a point) (resultant) displacement is (vector) sum of individual displacements (i) λ = ax / D (if no formula given and substitution is incorrect then 0/3) 590 × 10⁻⁹ = (1.4 × 10⁻³ × x) / 2.6 x = 1.1 mm (ii) 1. 180° (allow π if rad stated) 2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity ~ amplitude² allow I ~ a² ratio = 3.4² / 0.6² = 32 (i) path: reasonable curve upwards between plates straight and at a tangent to the curve beyond the plates (ii) 1. (F =) E.g 2. (I =) L / V (i) total momentum of a system remains constant or total momentum of a system before a collision equals total momentum after collision provided no external force acts on the system (do not accept 'conserved' but otherwise correct statement gets 1/2) (ii) (Δρ =) EqL / V allow ecf from (a)(iii) (iii) either charged particle is not an isolated system so law does not apply or system is particle and 'plates' 	(ii) Fig. 5.3 B1 (ii) Fig. 5.3 B1 (ii) $AE_P = mg\Lambda h / mgh$ C1

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A LEVEL – October/November 2010	9702	23	
8	(a) (i) eith	er $P = V^2 / R$ or $I = 1200 / 230$ or 5.22 $R = (230 \times 230) / 1200$		C1	
	R=	$230^2 / 1200$ or $R = 230 / 5.22$		M1	
		$4.1\Omega = 44.1\Omega$		A0	[2]
		= $\rho L / A$ = $(1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^2)$ = 0.492Ω		C1 M1 A0	[2]
	(b) current power (allow fu			C1 C1 A1	[3]
	moi cab	s power dissipated in the heater / smaller p.d. across here power loss in cable / current lower le becomes heated / melts y two sensible suggestions, 1 each, max 2)	eater /	B1 B1	[2]
9		emits $\alpha\text{-particles}$ or $\beta\text{-particles}$ and/or $\gamma\text{-radiation}$ a different / more stable nucleus		B1 B1	[2]
	(b) (i) fluc	tuations in count rate (not 'count rate is not constant')		B1	[1]
	(ii) no e	effect		B1	[1]
	(iii) if th	e source is an α -emitter $er = \alpha$ -particles stopped within source (and gain electr	ons)	B1	
	or	α -particles are helium <u>nuclei</u>		B1	[2]
		4/0.6 /	.,		

allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'