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1 Use the List of Formulae (MF10) to show that
13Ð
r=1

�3r2 − 5r + 1� and
9Ð

r=0

�r3 − 1� have the same

numerical value. [4]

2 Find the value of the constant k for which the system of equations

2x − 3y + 4Ï = 1,

3x − y = 2,

x + 2y + kÏ = 1,

does not have a unique solution. [2]

For this value of k, solve the system of equations. [4]

3 The sequence a
1
, a

2
, a

3
, à is such that a

1
> 5 and an+1

= 4an

5
+ 5

an

for every positive integer n.

Prove by mathematical induction that an > 5 for every positive integer n. [5]

Prove also that an > an+1 for every positive integer n. [2]

4 The roots of the cubic equation x3 − 7x2 + 2x − 3 = 0 are !, " and '. Find the values of

(i)
1

�!"��"'��'!� ,

(ii)
1

!" + 1

"' + 1

'! ,

(iii)
1

!2"' + 1

!"2' + 1

!"'2
.

[6]

Deduce a cubic equation, with integer coefficients, having roots
1

!" ,
1

"' and
1

'! . [2]

5 The curves C1 and C2 have polar equations

C
1

: r = 1

ï2
, for 0 ≤ 1 < 20,

C
2

: r = ��
sin 1

2
1�, for 0 ≤ 1 ≤ 0.

Find the polar coordinates of the point of intersection of C
1

and C
2
. [2]

Sketch C1 and C2 on the same diagram. [3]

Find the exact value of the area of the region enclosed by C
1
, C

2
and the half-line 1 = 0. [4]

6 A curve has equation x2 − 6xy + 25y2 = 16. Show that
dy

dx
= 0 at the point �3, 1�. [4]

By finding the value of
d2y

dx2
at the point �3, 1�, determine the nature of this turning point. [5]
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7 Let In = Ó
1
2
0

0

xn sin x dx, where n is a non-negative integer. Show that

In = n
�

1
2
0�n−1 − n�n − 1�In−2, for n ≥ 2. �5�

Find the exact value of I
4
. [4]

8 By considering
nÐ

r=1

Ï2r−1, where Ï = cos1 + i sin 1, show that, if sin 1 ≠ 0,

nÐ
r=1

sin�2r − 1�1 = sin2 n1
sin1 . �7�

Deduce that
nÐ

r=1

�2r − 1� cos

B �2r − 1�0
2n

C
= − cosec

0 0
2n

1
cot

0 0
2n

1
. �4�

9 The curve C has parametric equations

x = 4t + 2t
3
2 , y = 4t − 2t

3
2 , for 0 ≤ t ≤ 4.

Find the arc length of C, giving your answer correct to 3 significant figures. [6]

Find the mean value of y with respect to x over the interval 0 ≤ x ≤ 32. [5]

10 The matrix A is given by

A =
`

2 2 −3

2 2 3

−3 3 3

a
.

The matrix A has an eigenvector

`
1

−1

1

a
. Find the corresponding eigenvalue. [2]

The matrix A also has eigenvalues 4 and 6. Find corresponding eigenvectors. [3]

Hence find a matrix P such that A = PDP−1, where D is a diagonal matrix which is to be determined.

[2]

The matrix B is such that B = QAQ−1, where

Q =
` 4 11 5

1 4 2

1 2 1

a
.

By using the expression PDP−1 for A, find the set of eigenvalues and a corresponding set of

eigenvectors for B. [5]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

Show that the substitution v = 1

y
reduces the differential equation

2

y3

@
dy

dx

A2

− 1

y2

d2y

dx2
− 2

y2

dy

dx
+ 5

y
= 17 + 6x − 5x2

to the differential equation

d2v

dx2
+ 2

dv

dx
+ 5v = 17 + 6x − 5x2. �4�

Hence find y in terms of x, given that when x = 0, y = 1
2

and
dy

dx
= −1. [10]

OR

The lines l
1

and l
2

have equations r = 8i + 2j + 3k + ,�i − 2j� and r = 5i + 3j − 14k + -�2j − 3k�
respectively. The point P on l1 and the point Q on l2 are such that PQ is perpendicular to both l1 and

l
2
. Find the position vector of the point P and the position vector of the point Q. [8]

The points with position vectors 8i + 2j + 3k and 5i + 3j − 14k are denoted by A and B respectively.

Find

(i)
−−→
AP × −−→

AQ and hence the area of the triangle APQ,

(ii) the volume of the tetrahedron APQB. (You are given that the volume of a tetrahedron is
1
3
× area of base × perpendicular height.)

[6]
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