Cambridge International Examinations

Cambridge International Advanced Level

MATHEMATICS

9709/73
Paper 7 Probability \& Statistics 2 (S2)
May/June 2015

Additional Materials: Answer Booklet/Paper

 Graph Paper List of Formulae (MF9)
READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50 .
Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

1 Jyothi wishes to choose a representative sample of 5 students from the 82 members of her school year.
(i) She considers going into the canteen and choosing a table with five students from her year sitting at it, and using these five people as her sample. Give two reasons why this method is unsatisfactory.
(ii) Jyothi decides to use another method. She numbers all the students in her year from 1 to 82 . Then she uses her calculator and generates the following random numbers.

$$
231492 \quad 762305 \quad 346280
$$

From these numbers, she obtains the student numbers $23,14,76,5,34$ and 62. Explain how Jyothi obtained these student numbers from the list of random numbers.

2 Marie claims that she can predict the winning horse at the local races. There are 8 horses in each race. Nadine thinks that Marie is just guessing, so she proposes a test. She asks Marie to predict the winners of the next 10 races and, if she is correct in 3 or more races, Nadine will accept Marie's claim.
(i) State suitable null and alternative hypotheses.
(ii) Calculate the probability of a Type I error.
(iii) State the significance level of the test.

3 A die is biased so that the probability that it shows a six on any throw is p.
(i) In an experiment, the die shows a six on 22 out of 100 throws. Find an approximate 97% confidence interval for p.
(ii) The experiment is repeated and another 97% confidence interval is found. Find the probability that exactly one of the two confidence intervals includes the true value of p.

4 The marks, x, of a random sample of 50 students in a test were summarised as follows.

$$
n=50 \quad \Sigma x=1508 \quad \sum x^{2}=51825
$$

(i) Calculate unbiased estimates of the population mean and variance.
(ii) Each student's mark is scaled using the formula $y=1.5 x+10$. Find estimates of the population mean and variance of the scaled marks, y.

5 The mean breaking strength of cables made at a certain factory is supposed to be 5 tonnes. The quality control department wishes to test whether the mean breaking strength of cables made by a particular machine is actually less than it should be. They take a random sample of 60 cables. For each cable they find the breaking strength by gradually increasing the tension in the cable and noting the tension when the cable breaks.
(i) Give a reason why it is necessary to take a sample rather then testing all the cables produced by the machine.
(ii) The mean breaking strength of the 60 cables in the sample is found to be 4.95 tonnes. Given that the population standard deviation of breaking strengths is 0.15 tonnes, test at the 1% significance level whether the population mean breaking strength is less than it should be.
(iii) Explain whether it was necessary to use the Central Limit theorem in the solution to part (ii).

6 People arrive at a checkout in a store at random, and at a constant mean rate of 0.7 per minute. Find the probability that
(i) exactly 3 people arrive at the checkout during a 5 -minute period,
(ii) at least 30 people arrive at the checkout during a 1 -hour period.

People arrive independently at another checkout in the store at random, and at a constant mean rate of 0.5 per minute.
(iii) Find the probability that a total of more than 3 people arrive at this pair of checkouts during a 2-minute period.

7 The probability density function of the random variable X is given by

$$
f(x)= \begin{cases}\frac{3}{4} x(c-x) & 0 \leqslant x \leqslant c \\ 0 & \text { otherwise }\end{cases}
$$

where c is a constant.
(i) Show that $c=2$.
(ii) Sketch the graph of $y=\mathrm{f}(x)$ and state the median of X.
(iii) Find $\mathrm{P}(X<1.5)$.
(iv) Hence write down the value of $\mathrm{P}(0.5<X<1)$.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

