MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
QD	Special Puling (detailing the mark to be given for a specific wrong solution, or a

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Ρ	age 4	Mark Scheme		Syllabus Paper
		Cambridge International AS/A Level	– May/J	une 2015 9709 61
1		$P(x < 3.273) = 0.5 - 0.475 = 0.025$ $z = -1.96$ $\frac{3.2 - \mu}{0.714} = -1.96$	M1 A1 M1	Attempt to find z-value using tables in reverse ± 1.96 seen Solving their standardised equation z-value not nec
		$\mu = 4.60s$	A1 [4]	Correct ans accept 4.6
2	(i)	UQ 5.5 – 7.0 cm	B1 [1]	
	(ii)	fd 5.33, 25, 28, 20.7, 6, fd 30 - 25 - 20 - 15 - 10 - 5 - 0 - 2 - 4 - 6 - 8 - 10 length in cm	M1 A1 B1 B1 [4]	Attempt at fd or scaled freq [fr/cw] Correct heights seen on graph Correct bar widths no gaps Labels (fd and length/cm) and correct bar ends
3	(i)	$P(A) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$ $P(B) = \frac{27}{36} = \frac{3}{4}$ $P(A \cap B) = \frac{12}{36} = \frac{1}{3}$ $P(A) \times P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$ Independent as $P(A \cap B) = P(A) \times P(B)$	M1 M1 B1 M1 A1 [5]	Sensible attempt at $P(A)$ Sensible attempt at $P(B)$ correct $P(A \cap B)$ Cf $P(A \cap B)$ with $P(A) \times P(B)$ need at least 1 correct Correct conclusion following all correct working
	(ii)	Not mutually exclusive because $P(A \cap B) \neq 0$ Or give counter example e.g. 1 and 6	B1√ [1]	ft their $P(A \cap B)$
4	(i)	$(1-x)0.9 + x \times 0.24 = 0.801$ x = 0.15	M1 A1 A1 [3]	Eqn with sum of two 2-factor probs = 0.801 Correct equation Correct answer

Page 5	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015			9709	61
(ii)	$P(\ge 100 \text{ times given } \le 3 \text{ views})$ $\frac{P(\ge 100 \text{ times } \bigcirc \ge 3 \text{ views})}{P(\ge 3 \text{ views})} =$	B1 M1	0.85×0.1 seen on its own as num or denom of a fraction Attempt at $P(\ge 3 \text{ views})$ either $(0.85 \times p_1 + 0.15 \times p_2)$ or $1 - 0.801$ seen anywhere Correct unsimplified $P(\ge 3 \text{ views})$ as num or denom of a fraction Correct answer		
	$\frac{0.85 \times 0.1}{0.85 \times 0.1 + 0.15 \times 0.76 \text{ or } 1 - 0.801} = 0.427$	A1 A1 [4]			
5 (i)	new mean = $\frac{9 \times 7.1 + 18 \times 5.2}{27}$ = 5.83	M1 A1 [2]	Mult by 9 and 18 and dividing by 27 correct answer		
(ii)	1.45 ² = so $\frac{\sum x_t^2}{9} = 472.6125 \text{ mm}$ $0.96^2 = \frac{\sum x_g^2}{18} - 5.2^2 \text{ so}$	M1 A1 A1	subst in a correct variance formula sq rt or not correct Σx_t^2 (rounding to 470) correct Σx_g^2 (rounding to 500) using $\Sigma x_t^2 + \Sigma x_g^2$, dividing by 27 and subt comb mean ² correct answer		
	$\Sigma x_g^2 = 503.3088$ New sd ² $\frac{472.6^2 + 503.3^2}{27} - 5.83^2 = 2.117$ New sd = 1.46	M1 A1 [5]			
6 (i)	$P(5, 6, 7) = {}^{8}C_{5}(0.68)^{5}(0.32)^{3} + {}^{8}C_{6}(0.68)^{6}(0.32)^{2} + {}^{8}C_{7}(0.68)^{7}(0.32)$ $= 0.722$	M1 M1 A1 A1 [4]	Binomial term ${}^{8}C_{x} p^{x} (1-p)^{8-x}$ seen $0Summing 3 binomial termsCorrect unsimplified answerCorrect answer$		
(ii)	$np = 340, npq = 108.8$ $P(x > 337) = P\left(z > \frac{337.5 - 340}{\sqrt{108.8}}\right)$	B1 M1 M1	Correct (unsimp var standardising w used 500 cc either 337.5 c	ith sq rt must	
	= P(z > -0.2396) = 0.595	M1 A1 [5]	correct area (> 0 500 correct answer	0.5) must hav	re used
(iii)	np(340) > 5 and nq(160) > 5	B1 [1]	must have both smaller, need nu justification		2
7 (a) (i)	$\frac{9!}{2!2!3!}$ = 15120 ways	B1 B1 [2]	Dividing by 2!2 Correct answer		

	Cambridge International AS/A Level	– May/J	une 2015	9709	61
(ii)	*******3 in $\frac{8!}{2!2!3!} = 1680$ ways	B1		Correct answer Dne correct way end in even correct way end in another even Summing 2 or 3 ways Correct answer Mult their (i) by 2/3 oe	
	*******7 in $\frac{8!}{2!3!}$ = 3360 ways Total even = 15120 - 1680 - 3360	B1 M1			
	= 10080 ways OR *******2 in 8!/2!3! = 3360 ways *******6 in 8!/2!2!3! = 1680 ways ********8 in 8!/2!2!2! = 5040ways Total = 10080 ways OR "15120" ×6/9 = 10080	A1 [4] B1 B1 M1 A1 M2 A2	Correct answer One correct way correct way end Summing 2 or 3 Correct answer		
(b)	$\begin{array}{cccccc} T(3) \ S(6) \ G(14) \\ 1 & 1 & 3 \ \text{in} \ 3 \times 6 \times {}^{14}\text{C}_3 = 6552 \\ 1 & 3 & 1 \ \text{in} \ 3 \times {}^{6}\text{C}_3 \times 14 = 840 \\ 3 & 1 & 1 \ \text{in} \ 1 \times 6 \times 14 = 84 \\ 2 & 2 & 1 \ \text{in} \ {}^{3}\text{C}_2 \times {}^{6}\text{C}_2 \times 14 = 630 \\ 2 & 1 & 2 \ \text{in} \ {}^{3}\text{C}_2 \times 6 \times {}^{14}\text{C}_2 = 1638 \\ 1 & 2 & 2 \ \text{in} \ 3 \times {}^{6}\text{C}_2 \times {}^{14}\text{C}_2 = 4095 \end{array}$	M1 M1 B1	Mult 3 (combine assume $6 = {}^{6}C_{1}e$ Listing at least 4 Summing at least options At least 3 correct options	etc 4 different op st 4 different	otions
	Total ways = 13839 (13800)	A1 [5]	Correct answer		

Mark Scheme

Syllabus

Paper

Page 6