CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/52 Paper 5, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	52

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol № implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	52

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	52

1
Radial, direction PO B1 3 Do not allow direction OP 2 (i) $mg = 30(0.8 - 0.5)/0.5$ $m = 1.8 \text{kg}$ AG M1 $m = 1.8 \text{kg}$ AG M1 $m = 1.8 \text{kg}$ AG M1 $m = 1.8 \text{kg}$ AG (ii) $EE = 30(1.2 - 0.5)^2/(2 \times 0.5)$ $-1.8 \times (1.2 - 0.5)g$ $v = 1.53 \text{ ms}^{-1}$ A1 M1 $m = 1.8 \text{kg}$ AT KE/EE/PE equation, 3 terms RHS = 2.1 3 (i) $d(3+3+4) = 3 \times 0.4 \sin 30 \times 2$ $d = 0.12 \text{ m}$ AT M1 $d = 0.12 \text{ m}$ AT Taking moments about AC (ii) $(3+3+4) \times 0.12 = F \times 0.8 \sin 30$ $d = 0.12 \text{ m}$ AT M1 $d = 0.12 \text{ m}$ AT Taking moments about A, allow candidate's $d = 0.12 \text{ m}$ AT 4 (i) $d = 0.12 \text{ m}$ AT BIV $d = 0.12 \text{ m}$ AT AT
2 (i) $mg = 30(0.8 - 0.5)/0.5$ $m = 1.8 \mathrm{kg}$ AG A1 2 (ii) $EE = 30(1.2 - 0.5)^2/(2 \times 0.5)$ B1 $1.8 v^2/2 = 30(1.2 - 0.5)^2/(2 \times 0.5)$ M1 $EE = 30(1.2 - 0.5)^2/(2 \times 0.5)$ M1 $EE = 30(1.2 - 0.5)g$ $v = 1.53 \mathrm{ms}^{-1}$ A1 3 3 (i) $d(3+3+4) = 3 \times 0.4 \mathrm{sin} 30 \times 2$ M1 A1 3 (ii) $(3+3+4) \times 0.12 = F \times 0.8 \mathrm{sin} 30$ M1 Taking moments about AC A1 A1 A1 A1 Taking moments about A, allow candidate's d F = 3 A1 At hinge, 7N upwards B1 $\sqrt[3]{3}$ Ft 10 - candidate's value (F) (downwards if negative) 4 (i) $r = 0.3 \mathrm{m}$ B1 Can be implied Resolving vertically for the particle $T = 9.5 \mathrm{N}$ A1
$m = 1.8 \text{kg}$ AG A1 2 (ii) EE = $30(1.2 - 0.5)^2/(2 \times 0.5)$ B1 $1.8 v^2/2 = 30(1.2 - 0.5)^2/(2 \times 0.5)$ M1 KE/EE/PE equation, 3 terms RHS = 2.1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 A1 $N = 1.8 \times (1.2 - 0.5)g$ A1 </th
(ii) $EE = 30(1.2 - 0.5)^2/(2 \times 0.5)$ B1 $1.8v^2/2 = 30(1.2 - 0.5)^2/(2 \times 0.5)$ M1 $-1.8 \times (1.2 - 0.5)g$ M1 $v = 1.53 \text{ ms}^{-1}$ A1 3 (i) $d(3+3+4) = 3 \times 0.4 \sin 30 \times 2$ M1 $d = 0.12 \text{ m}$ A1 (ii) $(3+3+4) \times 0.12 = F \times 0.8 \sin 30$ M1 $F = 3$ A1 At hinge, 7N upwards B1 At hinge, 7N upwards B1 At $0.4T/0.5 - 2(0.4/0.5) = 6$ M1 $0.4T/0.5 - 2(0.4/0.5) = 6$ M1 $0.4T/0.5 - 2(0.4/0.5) = 6$ M1 REF/EE/PE equation, 3 terms RHS = 2.1 Taking moments about AC Taking moments about A, allow candidate's d Ft 10 − candidate's value (F) (downwards if negative) Can be implied Resolving vertically for the particle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3(i) $d(3+3+4) = 3 \times 0.4 \sin 30 \times 2$ M1 A1 A1 A1 At hinge, 7N upwardsTaking moments about AC4(i) $r = 0.3 \text{m}$ M1 A1 At hinge, 7N upwardsB1 A1
A1 $d = 0.12 \text{ m}$ A1 $d = 0.12 \text{ m}$ A1 $d = 0.12 \text{ m}$ A1 $(ii) (3+3+4) \times 0.12 = F \times 0.8 \sin 30$ $F = 3$ A1 $At \text{ hinge, 7 N upwards}$ B1 $0.4T/0.5 - 2(0.4/0.5) = 6$ $T = 9.5 \text{ N}$ A1 $A1$ $A1$ $A1$ $A2$ $A1$ $A1$ $A2$ $A3$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$
(ii) $(3+3+4) \times 0.12 = F \times 0.8 \sin 30$ M1Taking moments about A, allow candidate's d $F=3$ A1At hinge, 7N upwards $B1\sqrt[h]{}$ 3Ft 10 – candidate's value (F) (downwards if negative)4(i) $r=0.3 \mathrm{m}$ B1Can be implied $0.4T/0.5 - 2(0.4/0.5) = 6$ M1Resolving vertically for the particle $T=9.5 \mathrm{N}$ A1
candidate's d $F = 3$ At hinge, 7N upwards $B1\sqrt[h]{}$ 3 Ft 10 – candidate's value (F) (downwards if negative) 4 (i) $r = 0.3 \mathrm{m}$ $0.4T/0.5 - 2(0.4/0.5) = 6$ $T = 9.5 \mathrm{N}$ B1 Can be implied Resolving vertically for the particle
At hinge, 7 N upwards $B1\sqrt[h]{} 3 \qquad \text{Ft } 10 - \text{ candidate's value } (F)$ $(\text{downwards if negative})$ $4 \textbf{(i)} r = 0.3 \text{m}$ $0.4T/0.5 - 2(0.4/0.5) = 6$ $T = 9.5 \text{N}$ $B1 \qquad \text{Can be implied}$ $Resolving vertically for the particle}$
(downwards if negative) 4 (i) $r = 0.3 \mathrm{m}$ $0.4T/0.5 - 2(0.4/0.5) = 6$ $T = 9.5 \mathrm{N}$ B1 Can be implied Resolving vertically for the particle
0.4T/0.5 - 2(0.4/0.5) = 6 $T = 9.5 N$ M1 Resolving vertically for the particle
$T = 9.5 \mathrm{N}$ A1
9.5(0.3/0.5)+2(0.3/0.5)= $6v^2/(0.3g)$ M1 Newton's Second Law radially for P
$v = 1.86 \mathrm{ms}^{-1}$ A1 5
(ii) $[0.4T/0.5 = 6]$, $T = 7.5$ B1 Uses tension in BP = 0 and resolves vertically
$7.5(0.3/0.5) = (6/g) \omega^2(0.3)$ M1 Newton's Second Law radially for P
$\omega = 5 \text{ rad s}^{-1}$ AG A1 3
5 (i) CP = 0.8 B1 P is the point where the string is attached to the plane
$T = 12 \times (0.8-0.4)/0.4$ M1 Uses $T = \lambda x/l$
$T = 12 \mathrm{N}$ A1 3

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	52

	(ii)	Moment of T at $B = 0.4 \times 12\cos 30$	B1√		ft for their T in (i)
		$0.4 \times 12\cos 30 =$	M1		Moments about B
		$0.2W\cos 30 - 0.2W\sin 30$	A1		Or RHS = $0.2\sqrt{2} \cos 75W$ or $W(0.2-0.2\tan 30)\cos 30$
		W = 56.8 N	A1	4	,
			Al	4	
6	(i)	$U\cos\theta = 18\cos 30 \ (=9\sqrt{3} = 15.588)$	B1		
		$U\sin\theta - 2g = -18\sin 30$	B1		$U\sin\theta = 11$
		$U^2 = 15.588^2 + 11^2$	M1		Pythagoras or $\tan\theta = 11/15.588$
		U = 19.1	A1		
		$\theta = 35.2$	A1	5	
	(ii)	$X = 0.8V\cos 30$	B1		Horizontal displacement
		$Y = -0.8V \sin 30 + g \cdot 0.8^2 / 2$	B1		Vertical displacement
		$(3.2-0.4V)/(0.8V\cos 30)$ =tan60	M1		Or 0.8Vcos30/(3.2–0.4V)=tan30
		V = 2	A1	4	
		OR working perpendicular to the wall	B1*		
		$a = g\cos 60$	DB1*		
		$0 = 0.8V - g\cos 60(0.8)^2/2$	M1		Uses $s = 0$
		V = 2	A1		
7	(i)	$R = 0.2g - 0.4 \times 2\sin 30$	M1		Resolving vertically, 3 terms
		$F_R = 0.4 \times 2\cos 30$	M1		Use $F = \mu R$
		$\mu = 0.433$	A1		
		$0.2g = 0.4 t \sin 30$	M1		Solves for t when $R = 0$
		t = 10	A1	5	
	(ii)	$0.2 dv/dt = 0.4t \cos 30 - 0.433(0.2g - 0.4t \sin 30)$	M1 A1		Newton's Second Law with both forces f(t)
		dv/dt = 2.165t - 4.33(0) AG	A1	3	5561 151665 1(6)
<u> </u>			L		

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	52

(iii)	$\int \! \mathrm{d}v = \int (2.165t - 4.33) \mathrm{d}t$	M1		Attempts to integrate
	$v = 2.165t^2/2 - 4.33t (+c)$	A1		
	v = 0, t = 2 [c = 4.33]	M1		Must use $t = 2$
	$v = 2.165 \times 10^2 / 2 - 4.33 \times 10 + 4.33$ v = 69.3	A1	4	Puts t (i) in integrand