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1 In the expansion of (x2 −
a

x
)7

, the coefficient of x5 is −280. Find the value of the constant a. [3]

2 A function f is such that f(x) =

√(x + 3

2
) + 1, for x ≥ −3. Find

(i) f −1(x) in the form ax2 + bx + c, where a, b and c are constants, [3]

(ii) the domain of f −1. [1]

3
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The diagram shows a plan for a rectangular park ABCD, in which AB = 40 m and AD = 60 m. Points

X and Y lie on BC and CD respectively and AX, XY and YA are paths that surround a triangular

playground. The length of DY is x m and the length of XC is 2x m.

(i) Show that the area, A m2, of the playground is given by

A = x2 − 30x + 1200. [2]

(ii) Given that x can vary, find the minimum area of the playground. [3]

4 The line y =
x

k
+ k, where k is a constant, is a tangent to the curve 4y = x2 at the point P. Find

(i) the value of k, [3]

(ii) the coordinates of P. [3]
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The diagram shows a triangle ABC in which A has coordinates (1, 3), B has coordinates (5, 11) and

angle ABC is 90◦. The point X (4, 4) lies on AC. Find

(i) the equation of BC, [3]

(ii) the coordinates of C. [3]

6 (i) Show that the equation 2 cos x = 3 tan x can be written as a quadratic equation in sin x. [3]

(ii) Solve the equation 2 cos 2y = 3 tan 2y, for 0◦ ≤ y ≤ 180◦. [4]

7 The position vectors of the points A and B, relative to an origin O, are given by

−−→
OA = (1

0

2

) and
−−→
OB = ( k

−k

2k

),

where k is a constant.

(i) In the case where k = 2, calculate angle AOB. [4]

(ii) Find the values of k for which
−−→
AB is a unit vector. [4]

8 (a) In a geometric progression, all the terms are positive, the second term is 24 and the fourth term

is 131
2
. Find

(i) the first term, [3]

(ii) the sum to infinity of the progression. [2]

(b) A circle is divided into n sectors in such a way that the angles of the sectors are in arithmetic

progression. The smallest two angles are 3◦ and 5◦. Find the value of n. [4]

[Questions 9, 10 and 11 are printed on the next page.]
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y = 9
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The diagram shows part of the curve y =
9

2x + 3
, crossing the y-axis at the point B (0, 3). The point

A on the curve has coordinates (3, 1) and the tangent to the curve at A crosses the y-axis at C.

(i) Find the equation of the tangent to the curve at A. [4]

(ii) Determine, showing all necessary working, whether C is nearer to B or to O. [1]

(iii) Find, showing all necessary working, the exact volume obtained when the shaded region is

rotated through 360◦ about the x-axis. [4]

10 A curve is defined for x > 0 and is such that
dy

dx
= x +

4

x2
. The point P (4, 8) lies on the curve.

(i) Find the equation of the curve. [4]

(ii) Show that the gradient of the curve has a minimum value when x = 2 and state this minimum

value. [4]

11
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The diagram shows a sector of a circle with centre O and radius 20 cm. A circle with centre C and

radius x cm lies within the sector and touches it at P, Q and R. Angle POR = 1.2 radians.

(i) Show that x = 7.218, correct to 3 decimal places. [4]

(ii) Find the total area of the three parts of the sector lying outside the circle with centre C. [2]

(iii) Find the perimeter of the region OPSR bounded by the arc PSR and the lines OP and OR. [4]
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