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1 Solve the equation

ln(3x + 4) = 2 ln(x + 1),
giving your answer correct to 3 significant figures. [4]
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In the diagram, ABC is a triangle in which angle ABC is a right angle and BC = a. A circular arc,

with centre C and radius a, joins B and the point M on AC. The angle ACB is θ radians. The area of

the sector CMB is equal to one third of the area of the triangle ABC.

(i) Show that θ satisfies the equation

tan θ = 3θ. [2]
(ii) This equation has one root in the interval 0 < θ < 1

2
π. Use the iterative formula

θ
n+1

= tan−1(3θ
n
)

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal

places. [3]

3 Expand

√(1 − x

1 + x
) in ascending powers of x, up to and including the term in x2, simplifying the

coefficients. [5]

4 Solve the equation

cosec 2θ = sec θ + cot θ,

giving all solutions in the interval 0◦ < θ < 360◦. [6]

5 The variables x and y satisfy the differential equation

dy

dx
= e2x+y,

and y = 0 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [6]

6 The equation of a curve is y = 3 sin x + 4 cos3 x.

(i) Find the x-coordinates of the stationary points of the curve in the interval 0 < x < π. [6]

(ii) Determine the nature of the stationary point in this interval for which x is least. [2]
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7 Throughout this question the use of a calculator is not permitted.

The complex number u is defined by

u = 1 + 2i

1 − 3i
.

(i) Express u in the form x + iy, where x and y are real. [3]

(ii) Show on a sketch of an Argand diagram the points A, B and C representing the complex numbers

u, 1 + 2i and 1 − 3i respectively. [2]

(iii) By considering the arguments of 1 + 2i and 1 − 3i, show that

tan−1 2 + tan−1 3 = 3
4
π. [3]

8 Let I = ä 5

2

5

x + √(6 − x) dx.

(i) Using the substitution u = √(6 − x), show that

I = ä 2

1

10u(3 − u)(2 + u) du. [4]

(ii) Hence show that I = 2 ln(9
2
). [6]

9
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The diagram shows the curve y = x
1
2 ln x. The shaded region between the curve, the x-axis and the line

x = e is denoted by R.

(i) Find the equation of the tangent to the curve at the point where x = 1, giving your answer in the

form y = mx + c. [4]

(ii) Find by integration the volume of the solid obtained when the region R is rotated completely

about the x-axis. Give your answer in terms of π and e. [7]

[Question 10 is printed on the next page.]
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10 Two planes, m and n, have equations x + 2y − 2ß = 1 and 2x − 2y + ß = 7 respectively. The line l has

equation r = i + j − k + λ(2i + j + 2k).
(i) Show that l is parallel to m. [3]

(ii) Find the position vector of the point of intersection of l and n. [3]

(iii) A point P lying on l is such that its perpendicular distances from m and n are equal. Find the

position vectors of the two possible positions for P and calculate the distance between them.

[6]

[The perpendicular distance of a point with position vector x
1
i + y

1
j + ß

1
k from the plane

ax + by + cß = d is
|ax

1
+ by

1
+ cß

1
− d |√(a2 + b2 + c2) .]
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