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1 Expand
16

(2 + x)2
in ascending powers of x, up to and including the term in x2, simplifying the

coefficients. [4]

2 The equation of a curve is y = e2x

1 + e2x
. Show that the gradient of the curve at the point for which

x = ln 3 is 9
50

. [4]

3 (i) Express 8 cos θ + 15 sin θ in the form R cos(θ − α), where R > 0 and 0◦ < α < 90◦. Give the value

of α correct to 2 decimal places. [3]

(ii) Hence solve the equation 8 cos θ + 15 sin θ = 12, giving all solutions in the interval 0◦ < θ < 360◦.
[4]

4 During an experiment, the number of organisms present at time t days is denoted by N, where N is

treated as a continuous variable. It is given that

dN

dt
= 1.2e−0.02tN0.5.

When t = 0, the number of organisms present is 100.

(i) Find an expression for N in terms of t. [6]

(ii) State what happens to the number of organisms present after a long time. [1]

5 It is given that ã
a

1

x ln x dx = 22, where a is a constant greater than 1.

(i) Show that a =
√( 87

2 ln a − 1
). [5]

(ii) Use an iterative formula based on the equation in part (i) to find the value of a correct to 2 decimal

places. Use an initial value of 6 and give the result of each iteration to 4 decimal places. [3]

6 The complex number w is defined by w = −1 + i.

(i) Find the modulus and argument of w2 and w3, showing your working. [4]

(ii) The points in an Argand diagram representing w and w2 are the ends of a diameter of a circle.

Find the equation of the circle, giving your answer in the form |ß − (a + bi)| = k. [4]
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7 The polynomial p(x) is defined by

p(x) = ax3 − x2 + 4x − a,

where a is a constant. It is given that (2x − 1) is a factor of p(x).
(i) Find the value of a and hence factorise p(x). [4]

(ii) When a has the value found in part (i), express
8x − 13

p(x) in partial fractions. [5]

8

x

y

O

The diagram shows the curve with parametric equations

x = sin t + cos t, y = sin3 t + cos3 t,

for 1
4
π < t < 5

4
π.

(i) Show that
dy

dx
= −3 sin t cos t. [3]

(ii) Find the gradient of the curve at the origin. [2]

(iii) Find the values of t for which the gradient of the curve is 1, giving your answers correct to

2 significant figures. [4]

9 The line l has equation r = (a

1

4

) + λ( 4

3

−2

), where a is a constant. The plane p has equation

2x − 2y + ß = 10.

(i) Given that l does not lie in p, show that l is parallel to p. [2]

(ii) Find the value of a for which l lies in p. [2]

(iii) It is now given that the distance between l and p is 6. Find the possible values of a. [5]

© UCLES 2011 9709/33/O/N/11 [Turn over



4

10 (i) Use the substitution u = tan x to show that, for n ≠ −1,

ã
1
4
π

0

(tann+2 x + tann x) dx = 1

n + 1
. [4]

(ii) Hence find the exact value of

(a) ã
1
4

π

0

(sec4 x − sec2 x) dx, [3]

(b) ã
1
4

π

0

(tan9 x + 5 tan7 x + 5 tan5 x + tan3 x) dx. [3]
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