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1 Expand (1 + 2x)−3 in ascending powers of x, up to and including the term in x2, simplifying the

coefficients. [3]

2 The parametric equations of a curve are

x = t

2t + 3
, y = e−2t.

Find the gradient of the curve at the point for which t = 0. [5]

3 The complex number w is defined by w = 2 + i.

(i) Showing your working, express w2 in the form x + iy, where x and y are real. Find the modulus

of w2. [3]

(ii) Shade on an Argand diagram the region whose points represent the complex numbers ß which

satisfy

|ß − w2| ≤ |w2|. [3]

4 It is given that f(x) = 4 cos2 3x.

(i) Find the exact value of f ′(1
9
π). [3]

(ii) Find ã f(x) dx. [3]

5 Show that ä
7

0

2x + 7(2x + 1)(x + 2) dx = ln 50. [7]

6 The straight line l passes through the points with coordinates (−5, 3, 6) and (5, 8, 1). The plane p

has equation 2x − y + 4ß = 9.

(i) Find the coordinates of the point of intersection of l and p. [4]

(ii) Find the acute angle between l and p. [4]

7 (i) Given that ä
a

1

ln x

x2
dx = 2

5
, show that a = 5

3
(1 + ln a). [5]

(ii) Use an iteration formula based on the equation a = 5
3
(1 + ln a) to find the value of a correct to

2 decimal places. Use an initial value of 4 and give the result of each iteration to 4 decimal

places. [3]
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8 (i) Express (√ 6) cos θ + (√10) sin θ in the form R cos(θ − α), where R > 0 and 0◦ < α < 90◦. Give

the value of α correct to 2 decimal places. [3]

(ii) Hence, in each of the following cases, find the smallest positive angle θ which satisfies the

equation

(a) (√6) cos θ + (√10) sin θ = −4, [2]

(b) (√6) cos 1
2
θ + (√10) sin 1

2
θ = 3. [4]

9 A biologist is investigating the spread of a weed in a particular region. At time t weeks after the

start of the investigation, the area covered by the weed is A m2. The biologist claims that the rate of

increase of A is proportional to
√(2A − 5).

(i) Write down a differential equation representing the biologist’s claim. [1]

(ii) At the start of the investigation, the area covered by the weed was 7 m2 and, 10 weeks later, the

area covered was 27 m2 . Assuming that the biologist’s claim is correct, find the area covered

20 weeks after the start of the investigation. [9]

10 The polynomial p(ß) is defined by

p(ß) = ß3 + mß2 + 24ß + 32,

where m is a constant. It is given that (ß + 2) is a factor of p(ß).
(i) Find the value of m. [2]

(ii) Hence, showing all your working, find

(a) the three roots of the equation p(ß) = 0, [5]

(b) the six roots of the equation p(ß2) = 0. [6]
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