

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/42

Paper 4 A Level Structured Questions

October/November 2018

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 13

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 13

Question			Answer			Marks
1(a)(i)		peak	organic compound	explanation		2
		J	carboxylic acid	most polar		
		K	ketone	polarity between J and L		
		L	alkene	most non-polar		
	peak assignments [1] explanation of J or L [1]		•		-	
1(a)(ii)	% of K = 18/92 = 19.6 %					
1(b)(i)	$Cl_2 + AlCl_3 \rightarrow Cl^{\dagger} + AlCl_{4-}$					
1(b)(ii)	Cl^+					4
	curly arrow [1]					
1(b)(iii)	$H^+ + AlCl_4^- \rightarrow AlCl_3 + HCl$					1
1(c)(i)	catalyst and the reactants are in the same phase / state					1
1(c)(ii)	(Rh) heterogeneous AND (Fe ³⁺) homogeneous					1

© UCLES 2018 Page 4 of 13

Question	Answer	Marks
2(a)	3d 4s	2
	Cu [Ar] 1 1 1 1 1 1 1	
	Cu^{2+} [Ar] 1 1 1 1 1 1 [1] $\times 2$	
24.70		4
2(b)(i)	orbitals have the same energy	1
2(b)(ii)	d-d splitting seen, leading to 2 upper and 3 lower orbitals	1
2(c)	an ion / molecule that donates two pairs of electrons	1
2(d)	one correct [1] two correct and mirror images of each other [1]	2

Question	Answer	Marks
3(a)(i)	solution of \mathbf{A} [Co(NH ₃) ₆] ²⁺ [1] precipitate \mathbf{B} CoCO ₃ [1]	2
3(a)(ii)	NaOH(aq) / OH ⁻ (aq)	1
3(a)(iii)	$[Co(H_2O)_4(OH)_2] + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 4H_2O + 2OH^-$	1

© UCLES 2018 Page 5 of 13

Question	Answer	Marks
3(a)(iv)	$[Co(H_2O)_6]^{2^+} + CO_3^{2^-} \rightarrow CoCO_3 + 6H_2O$	1
3(b)(i)	variable oxidation states	1
3(b)(ii)	OH COO- OH OH	1
3(b)(iii)	$C_4H_4O_6^{2-} + 3[O] \rightarrow 2HCO_2^- + 2CO_2 + H_2O$	1
3(c)(i)	H ₃ N CI CI NH ₃ H ₃ N CI H ₃ N Pt CI cis trans square planar shape of one isomer [1] both isomers drawn and assigned as cis and trans correctly [1]	2
3(c)(ii)	this can react / bond / bind with <u>DNA</u> [1] which prevents replication of the strand / prevents cell division / prevents mitosis [1]	2
3(d)	H_3N Pt O	1

© UCLES 2018 Page 6 of 13

Question	Answer	Marks
4(a)	(a) $Ca_3N_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2NH_3$ products are $Ca(OH)_2$ and NH_3 [1] rest of the equation, balanced [1]	
4(b)	M1: solubility increases (down the Group) [1] M2: because lattice energy and hydration energy decreases or lattice energy and hydration energy become less exothermic / (more) endothermic[1] M3: because lattice energy decreases to a greater extent (than does ΔH_{hyd}) [1]	3
4(c)	aqueous ions $\frac{\Delta H_{\text{hyd}}}{\Delta H_{\text{sol}}}$ gaseous ions $\frac{\Delta H_{\text{hyd}}}{\Delta H_{\text{latt}}}$ ionic solid	3
	arrow label and direction correct [1] x 3	
4(d)(i)	$K_{\rm sp} = [Ca^{2+}][F^{-}]^2 [1]$ units = mol ³ dm ⁻⁹ [1]	2
4(d)(ii)	$K_{sp} = 4x^3 = 3.45 \times 10^{-11}$ $x = 2.05 \times 10^{-4} \text{ (mol dm}^{-3)}$	1

© UCLES 2018 Page 7 of 13

Question	Answer	Marks
5(a)	ionic radius / ion size increases OR charge density decreases (down the group) [1]	2
	less polarisation / distortion of anion / nitrate ion / NO ₃ ⁻ / nitrate group OR	
	N-O / N=O bond is less weakened / distorted / polarised	
	OR more energy to break N-O / N=O bond [1]	
5(b)	• moles of $Ce^{4+} = 0.0400 \times 21.8 / 1000 = 8.72 \times 10^{-4}$ (moles of Ce^{4+}) • moles of $NO_2^- = 8.72 \times 10^{-4} / 2 = 4.36 \times 10^{-4}$ in 25 cm³ (use of 2:1 ratio correctly) • moles of $NO_2^- = 4.36 \times 10^{-4} \times 4 = 1.74(4) \times 10^{-3}$ in 100 cm^3 (use of 4:1 ratio correctly) • mass $NaNO_2 = 1.74(4) \times 10^{-3} \times (23.0 + 14.0 + 32.0) = 0.120 \text{ g}$ (use of M_r correctly) • % purity = $0.120 / 0.138 = 86.96\%$ (use of 0.0138 correctly)	3
	two points = [1] four points = [2] all five points = [3]	
5(c)(i)	$5NO_2^- + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$ OR $5HNO_2 + 2MnO_4^- + H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$	2
	all species correct [1] balanced [1]	
5(c)(ii)	$E_{\text{cell}}^{\circ} = 1.52 - 0.94 = 0.58 \text{ (V)}$	1
5(d)(i)	weak acid is partly ionised and strong acid is completely ionised	1
5(d)(ii)	$K_{a} = \frac{[H^{+}][NO_{2}^{-}]}{[HNO_{2}]}$	1
5(d)(iii)	$K_a = [H^+]^2 / [HNO_2]$ $[H^+] = \sqrt{0.00069 \times 0.15} = 1.02 \times 10^{-2} [1]$ pH = $-log[H^+] =$ 2.0 (1.99) [1] minimum 2 sigificant figures	2
5(d)(iv)	% ionisation = 100 × 1.02 × 10 ⁻² / 0.15 = 6.7–6.8 %	1

© UCLES 2018 Page 8 of 13

Question			Answer		Marks
5(e)(i)	M1 A solution that resists changes in pH [1] M2 when small amounts of acid or alkali are added to it [1]			2	
5(e)(ii)	M1 HNO ₂ + OH ⁻ \rightarrow NO ₂ ⁻ + H ₂ O [1] M2 NO ₂ ⁻ + H ⁺ \rightarrow HNO ₂ [1]				2
5(f)(i)	CuCN / copper(I) cyanide				1
5(f)(ii)	H_3C HO_2C H_3C HO_2C HO_2C CO_2H CO_2C CO_2C CO_2C CO_2C)——c	CO ₂ H [1] × 2		2
5(g)			number of peaks		2
		w	6		
		Z	3		
			[1] × 2	

© UCLES 2018 Page 9 of 13

Question	Answer	Marks
6(a)(i)	KCN / NaCN / CN ⁻	1
6(a)(ii)	step 1 PC l_3 + heat / PC l_5 / SOC l_2 [1] step 4 NaBH ₄ [1]	2
6(b)(i)	s H T H	2
6(b)(ii)	step I condensation [1] step II reduction [1]	2
6(c)	N	2

© UCLES 2018 Page 10 of 13

Question		Answer			
7(a)(i)	C ₁₅ H ₁₀ N ₂ O ₂			1	
7(a)(ii)	O 	CH ₂ —CH ₂ —	O H H -N-C-O-C-C-O H H H H	2	
7(a)(iii)		intermolecular force	group(s) involved	2	
		hydrogen bonding	NH		
		VDW forces / Induced dipole-dipole forces / polar forces	-C ₆ H ₄ CH ₂ - allow benzene / aromatic rings		
		1010037 polar 101003			
	M1 hydrogen bond M2 NH group for hy	·			
7(b)		ing [1]	example	3	
7(b)		ing [1] ydrogen AND second correct IMF [1]	example nylon / Kevlar	3	
7(b)		ing [1] ydrogen AND second correct IMF [1] type of polymer	·	3	
7(b)		ing [1] ydrogen AND second correct IMF [1] type of polymer synthetic polyamide	nylon / Kevlar	3	

© UCLES 2018 Page 11 of 13

Question	Answer	Marks
8(a)(i)	species with an unpaired electron	1
8(a)(ii)	$NH_2 + Cl \rightarrow NH_2Cl$	1
8(b)(i)	$ \begin{array}{c c} H \xrightarrow{\bullet} XX & \bullet \\ X & X & \bullet \\ \bullet & CI & \bullet \\ \bullet & \bullet & \bullet \end{array} $	1
8(b)(ii)	sp ³ AND 100–107°	1
8(c)(i)	(entropy) is a measure of the disorder/randomness of a system	1
8(c)(ii)	$\Delta S^{e} = 237 + 187 - (241 + 198) = -15.0 (J K^{-1} mol^{-1})$	1
8(c)(iii)	$\Delta H^{\text{e}} = 95.4 - 92.3 - (80.1 - 45.9) = -31.1 \text{ (kJ mol}^{-1}\text{)}$	1
8(c)(iv)	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ [1] $\Delta G^{\circ} = -31.1 - (298 \times -0.015) = -26.6 \text{ (kJ mol}^{-1})$ [1]	2
8(c)(v)	(at higher temperatures) $T\Delta S^e$ becomes more negative so ΔG^e becomes more positive OR (at high temperatures) $-T\Delta S^e$ is becomes more positive so ΔG^e becomes more positive	1
8(d)	ethylamine > ammonia > phenylamine [1] ethyl group is electron donating group [1] p-orbital from N in phenylamine overlaps with π -ring system OR lone pair on N is delocalised into benzene ring [1] basicity linked to ability of N to accept a proton [1]	4

© UCLES 2018 Page 12 of 13

Question	Answer	Marks
9(a)	$\begin{array}{c} CO_2H \\ CH_2 \\ CH_2 \\ CH_2 \\ O \\ CH_2SH \\ H_2N-C-C-N-C-CO_2H \\ H \\ H \\ H \\ H \\ H \\ H \\ \mathbf{M2} \text{ rest of the structure [1]} \end{array}$	2
9(b)	spot identity	3
	E Glu	
	F Glu-Cys	
	G Cys	
	 M1 correct table [1] M2 Explanation of why Cys moves the least – because it exists as a zwitterion / it is almost neutral [1] M3 Explanation of why Glu-Cys moves a smaller distance than Glu – a comparitive statement that Glu-Cys has than Glu [1] 	a greater <i>M</i> _r

© UCLES 2018 Page 13 of 13