

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/21

Paper 2 AS Structured Questions

October/November 2018

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 9

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 9

Question	Answer	Marks
1(a)(i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ (4s ⁰)	1
1(a)(ii)	-1	1
1(b)	M1 attraction/hold	2
	M2 positive ions / cations AND delocalised electrons (may be seen in a labelled diagram)	
1(c)(i)	M1 acid rain	2
	 M2 destroys / damages / weathers / erodes / buildings / statues kills/harms fish / coral / plants / crops / trees / deforestation leaches salts / ions (aluminium) from soil (into rivers / lakes) leaches away soil nutrients breathing difficulties lowers pH / increases acidity of soil / rivers / oceans / seas 	
1(c)(ii)	balanced equation with $11O_2$ and $8SO_2$ M1: O_2 and SO_2 M2: 11 and 8	2
1(c)(iii)	M1 is for process of calculating number of moles of Fe_2O_3 33.18 ÷ 159.6 (= 0.2079 mol)	2
	M2 for correct use of stoichiometry and 120.0 with candidate's M1 $\mathbf{M2} (0.2079) \times 4/2 \times 120.0 = 49.89 (g)$	
1(c)(iv)	(0.37/(0.37+49.89)) = 0.74	1

© UCLES 2018 Page 4 of 9

Question	Answer	Marks
2(a)(i)	 1 mark for each bullet, max 2 triple bond non-polar / no dipole needs a lot of energy to break / strong 	2
2(a)(ii)	6 e ⁻ between atoms AND two electrons on each N atom	1
2(b)(i)	(lightning) provides the (high) activation energy	1
2(b)(ii)	M1 NO + $\frac{1}{2}$ O ₂ \rightarrow NO ₂	2
	M2 $2NO_2 + H_2O + \frac{1}{2}O_2 \rightarrow 2HNO_3$	
2(c)	fertiliser / nitrates dissolve in (river / ground water) OR fertiliser / nitrates are washed / leached out / flows into (river/groundwater) M2 algal bloom / promote algal growth / explosion of plant growth AND sunlight is blocked out (preventing photosynthesis) / plants can no longer carry out photosynthesis (and die) AND bacteria break down or decay dead organisms / plants / algae M3 drop in oxygen (concentration)	3
2(d)(i)	to increase / raise pH	1
2(d)(ii)	M1 ammonia / NH ₃	2
	M2 displaces NH₃	

Question	Answer	Marks
2(d)(iii)	M1 effervescence / fizzing / bubbling	2
	M2 solid disappears	
2(d)(iv)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	1

Question	Answer	Marks
3(a)(i)	M1 gas / vapour (particles / molecules) in equilibrium (with liquid / solid)	2
	M2 greater proportion of gas (particles) than liquid (particles) (in comparison to a liquid of lower vapour pressure)	
3(a)(ii)	-17.(0) (kJ mol ⁻¹) ✓ ✓ ✓	3
	M1 $\Delta H_r = x(-482.2) + y(-92.3) - v(-103.2) - w(-273.3)$ where <i>x y v</i> and <i>w</i> are integers ≥1 (ignore stoichiometry)	
	M2 use of correct stoichiometry where $x = 1$ $y = 2$ $v = 1$ and $w = 2$	
3(a)(iii)	M1 in a different phase / state from reactants	3
	M2 a substance that speeds up a (chemical) reaction	
	M3 catalyst is regenerated / not used up / undergoes temporary chemical change / recovered unchanged	
3(b)(i)	Human activity creates / additional / more/increase / thicker layer in greenhouse gas(es) / CHC1F2	1
	OR Human activity has an impact on climate change / temperature at earth's surface / temperature of sea	
3(b)(ii)	M1 traps (more)heat	2
	M2 (in the atmosphere leading to) greater global warming or wtte	
3(b)(iii)	ozone depletion / thinning	1
3(c)(i)	addition	1

Question	Answer	Marks
3(c)(ii)	F F 	1
	——Ċ—Ċ—— 	
3(c)(iii)	molecule unreactive / inert	1
3(c)(iv)	non-biodegradable	2
	creates toxic / harmful gases / HF / CO ₂ / CO if burnt	

Question				Answ	er	Ma
4(a)	reagent	observation with glycolic acid	does a reaction occur?	functional group		
	Na ₂ CO ₃ (aq)	effervescence / fizzing / bubbling	✓	COOH / carboxylic acid		
	2,4–DNPH	no visible reaction owtte	×	(no group required)		
	acidified Cr ₂ O ₇ ²⁻	orange to green	✓	-OH / alcohol		
	1 mark for eac	ch in column 2 (obs)]		
	1 mark for CO	OH and OH				

© UCLES 2018 Page 7 of 9

Question	Answer				
4(b)(i)	H H—C—C≡N OH	1			
4(b)(ii)	hydrochloric / sulfuric / nitric / phosphoric acid	1			
4(b)(iii)	free-radical substitution	1			
4(b)(iv)	UV (light) / sunlight	1			
4(b)(v)	H C H C H C H C H C H C H C H C H C H C	2			
4(c)(i)	reducing agent / reductant	1			
4(c)(ii)	$C_2H_2O_3 + 2[H] \rightarrow C_2H_4O_3$ M1 for correct molecular formulae $C_2H_2O_3$ and $C_2H_4O_3$ M2 for balancing	2			

© UCLES 2018 Page 8 of 9

Question	Answer	Marks
4(d)(i)	EITHER Glycolic acid would have: M1 2500–3000 due to RCO ₂ -H M2 range within 3200–3650 due to RO–H	2
	OR	
	Spectrum Y would NOT have: M1 2500–3000 due to RCO ₂ -H M2 range within 3200–3650 due to RO–H	
4(d)(ii)	0—0—0	2
	M1 ANY ester group AND valid C₄H₄O₄ molecule M2 correct cyclic structure	

© UCLES 2018 Page 9 of 9