\\ \section*{Cambridge International Examinations\\ \section*{Cambridge International Examinations \\ Cambridge International Advanced Subsidiary and Advanced Level}
\square

CENTRE NUMBER

CANDIDATE NUMBER \square

CHEMISTRY

Paper 4 A Level Structured Questions

Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.

Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Answer all the questions in the spaces provided.

1 (a) Describe and explain the variation in the solubilities of the hydroxides of the Group 2 elements.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The table lists the standard enthalpy changes of formation, $\Delta H_{\mathrm{f}}^{\ominus}$, for some compounds and aqueous ions.

species	$\Delta H_{\mathrm{f}}^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{Ba}^{2+}(\mathrm{aq})$	-538
$\mathrm{OH}^{-}(\mathrm{aq})$	-230
$\mathrm{CO}_{2}(\mathrm{~g})$	-394
$\mathrm{BaCO}_{3}(\mathrm{~s})$	-1216
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-286

(b) (i) Reaction 1 occurs when $\mathrm{CO}_{2}(\mathrm{~g})$ is bubbled through an aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$.

Use the data in the table to calculate the standard enthalpy change for reaction $1, \Delta H_{r 1}^{\ominus}$.

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \text { reaction } 1
$$

\qquad

If $\mathrm{CO}_{2}(\mathrm{~g})$ is bubbled through an aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ for a long time, the precipitated $\mathrm{BaCO}_{3}(\mathrm{~s})$ dissolves, as shown in reaction 2.

$$
\mathrm{BaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ba}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \quad \text { reaction } 2
$$

The standard enthalpy change for reaction $2, \Delta H_{\mathrm{r} 2}^{\ominus},=-26 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(ii) Use this information and the data in the table to calculate the standard enthalpy change of formation of the $\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ ion.

$$
\begin{equation*}
\Delta H_{\mathrm{f}}^{\ominus} \mathrm{HCO}_{3}^{-}(\mathrm{aq})= \tag{2}
\end{equation*}
$$

\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
(iii) The overall process is shown by reaction 3 .

Use your answer to (ii), and the data given in the table, to calculate the standard enthalpy change for reaction $3, \Delta H_{\mathrm{r} 3}^{\ominus}$.

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ba}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \quad \text { reaction } 3
$$

$$
\Delta H_{\mathrm{r} 3}^{\ominus}=
$$

(iv) How would the value of $\Delta H_{r 3}^{\ominus}$ compare with the value of $\Delta H_{r 4}^{\ominus}$ for the similar reaction with $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$ as shown in reaction 4?
Explain your answer.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \quad \text { reaction } 4
$$

\qquad
\qquad
\qquad
(c) The standard entropy change for reaction 1 is $\Delta S_{r 1}^{\ominus}$.

Suggest, with a reason, how the standard entropy change for reaction 3 might compare with $\Delta S_{\mathrm{r} 1}^{\ominus}$.
\qquad
\qquad
\qquad

2 (a) One atom of each of the four elements $\mathrm{H}, \mathrm{C}, \mathrm{N}$ and O can bond together in different ways. Two examples are molecules of cyanic acid, HOCN , and isocyanic acid, HNCO. The atoms are bonded in the order they are written.
(i) Draw 'dot-and-cross' diagrams of these two acids, showing outer shell electrons only.
\square
HOCN, cyanic acid

(ii) Suggest the values of the bond angles HNC and NCO in isocyanic acid.

HNC \qquad NCO \qquad
(iii) Suggest which acid, cyanic or isocyanic, will have the shorter $\mathrm{C}-\mathrm{N}$ bond length. Explain your answer.
\qquad
\qquad
(b) (i) Isocyanic acid is a weak acid.

$$
\mathrm{HNCO} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NCO}^{-} \quad K_{\mathrm{a}}=1.2 \times 10^{-4} \mathrm{moldm}^{-3}
$$

Calculate the pH of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of isocyanic acid.

$$
\mathrm{pH}=
$$

(ii) Sodium cyanate, NaNCO , is used in the production of isocyanic acid.

Sodium cyanate is prepared commercially by reacting urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$, with sodium carbonate. Other products in this reaction are carbon dioxide, ammonia and steam.

Write an equation for the production of NaNCO by this method.
(c) Barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$, is completely ionised in aqueous solutions.

During the addition of $30.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{moldm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$ to $20.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{moldm}^{-3}$ isocyanic acid, the pH was measured.
(i) Calculate the $\left[\mathrm{OH}^{-}\right]$at the end of the addition.
$\left[\mathrm{OH}^{-}\right]=$ \qquad moldm^{-3} [2]
(ii) Use your value in (i) to calculate $\left[\mathrm{H}^{+}\right]$and the pH of the solution at the end of the addition.
final $\left[\mathrm{H}^{+}\right]=$ \qquad moldm^{-3}
final $\mathrm{pH}=$ \qquad
(iii) On the following axes, sketch how the pH changes during the addition of a total of $30.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$ to $20.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ isocyanic acid.

(d) The cyanate ion, NCO^{-}, can act as a monodentate ligand.
(i) State what is meant by the terms monodentate, \qquad
\qquad ligand. \qquad
\qquad

Silver ions, Ag^{+}, react with cyanate ions to form a linear complex.
(ii) Suggest the formula of this complex, including its charge.
(e) When heated with $\mathrm{HCl}(\mathrm{aq})$, organic isocyanates, RNCO , are hydrolysed to the amine salt, $\mathrm{RNH}_{3} \mathrm{Cl}$, and CO_{2}.

$$
\mathrm{RNCO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{RNH}_{3} \mathrm{Cl}+\mathrm{CO}_{2}
$$

A 1.00 g sample of an organic isocyanate, RNCO , was treated in this way, and the CO_{2} produced was absorbed in an excess of aqueous $\mathrm{Ba}(\mathrm{OH})_{2}$ according to the equation shown. The solid BaCO_{3} precipitated weighed 1.66 g .

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(i) Calculate the number of moles of BaCO_{3} produced.

$$
\begin{equation*}
\text { moles of } \mathrm{BaCO}_{3}= \tag{1}
\end{equation*}
$$

(ii) Hence calculate the M_{r} of the organic isocyanate RNCO.

$$
\begin{equation*}
M_{\mathrm{r}} \text { of } \mathrm{RNCO}= \tag{1}
\end{equation*}
$$

The R group in RNCO and $\mathrm{RNH}_{3} \mathrm{Cl}$ contains carbon and hydrogen only.
(iii) Use your M_{r} value calculated in (ii) to suggest the molecular formula of the organic isocyanate RNCO.
molecular formula of RNCO
(iv) Suggest a possible structure of the amine RNH_{2}, which forms the amine salt, $\mathrm{RNH}_{3} \mathrm{Cl}$.

[Total: 23]

3 Bubbling air through different aqueous mixtures of $\mathrm{CoCl}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$ and NH_{3} produces various complex ions with the general formula $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6-n} \mathrm{Cl}_{n}\right]^{3-n}$.
(a) (i) Determine the oxidation state of the cobalt in these complex ions.
\qquad
(ii) Name the two types of reaction undergone by the cobalt ions during the formation of these complex ions.
\qquad
\qquad
(iii) The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]^{+}$shows isomerism.

Draw three-dimensional structures of the two isomers, and suggest the type of isomerism shown here.

type of isomerism
(b) (i) What is meant by the term co-ordination number?
\qquad
\qquad
(ii) Complete the table by predicting appropriate co-ordination numbers, formulae and charges for the complexes C, D, E and F.

complex	metal ion	ligand	co-ordination number	formula of complex	charge on complex
C	Cr^{3+}	CN^{-}			$3-$
D	Ni^{2+}	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	6		
E	Pt^{2+}	Cl^{-}			$2-$
F	Fe^{3+}	$-\mathrm{O}_{2}{\mathrm{C}-\mathrm{CO}_{2}^{-}}$		$\left[\mathrm{Fe}\left(\mathrm{O}_{2} \mathrm{CCO}_{2}\right)_{3}\right]$	

(c) Iron(III) forms complexes in separate reactions with both SCN^{-}ions and Cl^{-}ions.

$$
\begin{gathered}
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{FeSCN}^{2+}(\mathrm{aq})\right. \\
\mathrm{Fe}^{3+(}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{FeCl}_{4}\right]^{-(\mathrm{aq})}
\end{gathered}
$$

(i) Write the expressions for the stability constants, $K_{\text {stab }}$, for these two equilibria. Include units in your answers.
$K_{\text {stab1 } 1}=$
units $=$ \qquad
$K_{\text {stab2 } 2}=$
units $=$ \qquad
(ii) An equilibrium can be set up between these two complexes as shown in equilibrium 3.

$$
\left[\mathrm{FeCl}_{4}\right]^{-}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons[\mathrm{FeSCN}]^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \quad \text { equilibrium } 3
$$

Write an expression for $K_{\text {eq3 } 3}$ in terms of $K_{\text {stab1 } 1}$ and $K_{\text {stab2 } 2}$.
$K_{\text {eq3 }}=$
(iii) The numerical values for these stability constants are shown.

$$
K_{\text {stab1 } 1}=1.4 \times 10^{2} \quad K_{\text {stab2 } 2}=8.0 \times 10^{-2}
$$

Calculate the value of $K_{\text {eq3 }}$ stating its units.
$K_{\text {eq3 }}=$ \qquad units $=$ \qquad

4 Carvone occurs in spearmint and a stereoisomer of carvone occurs in caraway seeds. Treating either isomer with hydrogen over a nickel catalyst produces a mixture of isomers with the structural formula \mathbf{X}.

(a) (i) State the type of stereoisomerism carvone can show. Explain your answer.
\qquad
\qquad
(ii) Write an equation, using molecular formulae, for this conversion of carvone to \mathbf{X}.
\qquad

X can be synthesised from methylbenzene by the following route.

(b) (i) Name the mechanism in step 1.
\qquad
(ii) What type of reaction is occuring in the following steps?
step 3 \qquad
step 5
(iii) Suggest reagents and conditions for each of the following steps.
step 1 \qquad
step 2 \qquad
step 3 \qquad
step 4 \qquad
(c) During step 6, hydrogen is added to the benzene ring to produce the cyclohexane ring in \mathbf{X}. The six hydrogen atoms are all added to the same side of the benzene ring.
(i) State the reagents and conditions needed for this reaction.
\qquad
(ii) Complete the part structure to show the structure of the isomer of \mathbf{X} that would most likely be obtained during this reaction.

5 Compounds $\mathbf{J}, \mathbf{K}, \mathbf{L}$ and \mathbf{M} are isomers of each other with the molecular formula $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$. All four isomers contain a benzene ring.
Two of the isomers contain a chiral centre.
The results of six tests carried out on $\mathbf{J}, \mathbf{K}, \mathbf{L}$ and \mathbf{M} are shown in the table.

test		observations with each isomer			
		J	K	L	M
1	add cold $\mathrm{HCl}(\mathrm{aq})$	soluble	soluble	soluble	insoluble
2	add 2,4-DNPH reagent	orange ppt.	orange ppt.	orange ppt.	no reaction
3	add $\mathrm{NaOH}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$	pale yellow ppt.	no reaction	pale yellow ppt.	no reaction
4	warm with Fehling's solution	no reaction	red ppt.	no reaction	no reaction
5	heat with $\mathrm{NaOH}(\mathrm{aq})$	no reaction	no reaction	no reaction	$\begin{aligned} & \mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right) \text { and } \\ & \mathbf{Q}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Na}\right) \\ & \text { produce } \end{aligned}$
6	diazotization and addition of alkaline phenol	no dye produced	orange dye produced	no dye produced	no dye produced

(a) Use the experimental results in the table above to determine the group(s), in addition to the benzene ring, present in each of the four isomers $\mathbf{J}, \mathbf{K}, \mathbf{L}$ and \mathbf{M}.

Complete the table below, identifying the group(s) present in each isomer.

(b) (i) Name the type of reaction occurring in test 5 that converts \mathbf{M} into $\mathbf{P}+\mathbf{Q}$.
\qquad
(ii) Suggest structures for compounds \mathbf{P} and \mathbf{Q}.

(c) Isomers $\mathbf{J}, \mathbf{K}, \mathbf{L}$ and \mathbf{M} all have the molecular formula $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$.

Use the information in (a) to suggest a structure for each of these isomers and draw these in the boxes. Draw circles around all chiral centres in \mathbf{K} and \mathbf{L}.
\square
\square
\square
\square
(d) Compound \mathbf{N} is another isomer which has the same molecular formula $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ and also contains a benzene ring.
\mathbf{N} contains the same functional group as \mathbf{M}.
When heated with $\mathrm{NaOH}(\mathrm{aq}), \mathbf{N}$ produces ethylamine and a sodium salt \mathbf{W}.
Suggest the structure of W.

6 The reaction between 1-chloro-1-phenylethane and hydroxide ions to produce 1-phenylethanol is:

$$
\underset{\text { 1-chloro-1-phenylethane }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClCH}_{3}}+\underset{\text { 1-phenylethanol }}{\mathrm{CH}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}}+\mathrm{Cl}^{-}
$$

The rate of this reaction can be studied by measuring the amount of hydroxide ions that remain in solution at a given time. The reaction can effectively be stopped if the solution is diluted with an ice-cold solvent.
(a) Describe a suitable method for studying the rate of this reaction at a temperature of $40^{\circ} \mathrm{C}$, given the following.

- a solution of $0.10 \mathrm{moldm}^{-3}$ 1-chloro-1-phenylethane, labelled A
- a solution of $0.10 \mathrm{moldm}^{-3}$ sodium hydroxide, labelled B
- $\quad 0.10 \mathrm{moldm}^{-3} \mathrm{HCl}$
- volumetric glassware
- ice-cold solvent
- stopclock
- access to standard laboratory equipment and chemicals
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The rate of this reaction was measured at different initial concentrations of the two reagents. The table shows the results obtained.

experiment	$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClCH}_{3}\right]$ $/ \mathrm{moldm}^{-3}$	$\left[\mathrm{OH}^{-}\right]$ $/ \mathrm{moldm}^{-3}$	relative rate
1	0.05	0.10	0.5
2	0.10	0.20	1.0
3	0.15	0.10	1.5
4	0.20	0.15	to be calculated

(i) Deduce the order of reaction with respect to each of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClCH}_{3}\right]$ and $\left[\mathrm{OH}^{-}\right]$. Explain your reasoning.
order with respect to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClCH}_{3}\right]$ \qquad
\qquad
order with respect to $\left[\mathrm{OH}^{-}\right]$ \qquad
\qquad
(ii) Write the rate equation for this reaction, stating the units of the rate constant, k. rate $=$ \qquad $\mathrm{moldm}^{-3} \mathrm{~s}^{-1}$ units of $k=$
(iii) Calculate the relative rate for experiment 4.
relative rate for experiment $4=$
(c) (i) Use your answers in (b)(i) to help you to draw the mechanism for the reaction of 1-chloro-1-phenylethane with hydroxide ions, including the following.

- all relevant lone pairs and dipoles
- curly arrows to show the movement of electron pairs
- the structures of any transition state or intermediate
(ii) This reaction was carried out using a single optical isomer of 1-chloro-1-phenylethane.

Use your mechanism in (i) to predict whether the product will be a single optical isomer or a mixture of two optical isomers. Explain your answer.
\qquad
\qquad
(d) The proton NMR spectrum of a sample of 1-phenylethanol shows four peaks: a multiplet for the $\mathrm{C}_{6} \mathrm{H}_{5}$ protons and three other peaks as shown in the table. When the sample is shaken with $\mathrm{D}_{2} \mathrm{O}$ and the proton NMR spectrum recorded, fewer peaks are seen.

Complete the table for the proton NMR spectrum of 1-phenylethanol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$. Use of the Data Booklet might be helpful.

δ / ppm	number of ${ }^{1} \mathrm{H}$ atoms responsible for the peak	group responsible for the peak	splitting pattern	result on shaking with $\mathrm{D}_{2} \mathrm{O}$
1.4				
2.7				
4.0				
$7.2-7.4$	5	$\mathrm{C}_{6} \mathrm{H}_{5}$	multiplet	peak remains

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

 Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

