Cambridge International Examinations
 Cambridge International Advanced Subsidiary and Advanced Level

\square
CANDIDATE
NAME

CENTRE NUMBER

CANDIDATE NUMBER \square

CHEMISTRY

Paper 4 A Level Structured Questions

Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Answer all the questions in the spaces provided.

1 (a) (i) Describe and explain the variation in the thermal stabilities of the carbonates of the Group 2 elements.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest and explain a reason why sodium carbonate is more stable to heat than magnesium carbonate.
\qquad
\qquad
\qquad
(b) Sodium hydrogencarbonate, NaHCO_{3}, and potassium hydrogencarbonate, KHCO_{3}, decompose on heating to produce gases and the solid metal carbonate.
(i) Write an equation for the decomposition of KHCO_{3}.
\qquad
(ii) Predict which of NaHCO_{3} or KHCO_{3} will decompose at the lower temperature. Explain your answer.
\qquad
\qquad
(c) (i) Use the data in the table below, and relevant data from the Data Booklet, to calculate the lattice energy, $\Delta H_{\text {latt }}^{\ominus}$ of potassium oxide, $\mathrm{K}_{2} \mathrm{O}(\mathrm{s})$.

energy change	value $/ \mathrm{kJ} \mathrm{mol}^{-1}$
enthalpy change of atomisation of potassium, $\Delta H_{\mathrm{at}}^{\ominus} \mathrm{K}(\mathrm{s})$	+89
electron affinity of $\mathrm{O}(\mathrm{g})$	-141
electron affinity of $\mathrm{O}^{-}(\mathrm{g})$	+798
enthalpy change of formation of potassium oxide, $\Delta H_{\ddagger}^{\ominus} \mathrm{K}_{2} \mathrm{O}(\mathrm{s})$	-361

$$
\begin{equation*}
\Delta H_{\text {latt }}^{\ominus}= \tag{3}
\end{equation*}
$$

\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
(ii) State whether the lattice energy of $\mathrm{Na}_{2} \mathrm{O}$ would be more negative, less negative or the same as that of $\mathrm{K}_{2} \mathrm{O}$. Give reasons for your answer.
\qquad
\qquad

2 (a) Complete the table to show how both $\mathrm{AgNO}_{3}(\mathrm{aq})$ and $\mathrm{NH}_{3}(\mathrm{aq})$ could be used to distinguish between solutions of $\mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{NaI}(\mathrm{aq})$.

test performed	observation with NaCl	observation with NaI

Important information for this question

- In this question (pr) means 'a solution in propanone'.
- Sodium iodide is soluble in propanone giving $\mathrm{Na}^{+}(\mathrm{pr})$ and $\mathrm{I}^{-}(\mathrm{pr})$.
- Sodium chloride is insoluble in propanone.

The reaction between 2-chlorobutane and sodium iodide in propanone is shown.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}(\mathrm{pr})+\mathrm{Na}^{+}(\mathrm{pr})+\mathrm{I}^{-}(\mathrm{pr}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHICH}_{3}(\mathrm{pr})+\mathrm{NaCl}(\mathrm{~s})
$$

The rate of this reaction can be investigated by measuring the electrical conductivity of the reaction mixture. The electrical conductivity changes as the reaction progresses due to the precipitation of the NaCl produced.
(b) (i) Suggest how the electrical conductivity will change as the reaction proceeds. Explain your answer.
\qquad
\qquad
(ii) Describe a suitable method for studying the rate of this reaction at a temperature of $40^{\circ} \mathrm{C}$, using the following.

- an electrical conductance meter which measures the electrical conductivity of solutions
- solutions of known concentrations of 2-chlorobutane in propanone and sodium iodide in propanone
- stopclock
- access to standard laboratory equipment
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The rate of this reaction was measured at different initial concentrations of the two reagents. The table shows the results obtained.

experiment	$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}\right]$ $/ \mathrm{moldm}^{-3}$	$[\mathrm{I}] / \mathrm{moldm}^{-3}$	relative rate
1	0.06	0.03	3
2	0.10	0.03	5
3	0.06	0.05	5
4	0.08	0.04	to be calculated

(i) Deduce the order of reaction with respect to each of $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}\right]$ and $\left[\mathrm{I}^{-}\right]$.

Explain your reasoning.
order with respect to $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}\right]$ \qquad
\qquad
order with respect to $\left[\mathrm{I}^{-}\right]$ \qquad
\qquad
(ii) Write the rate equation for this reaction, stating the units of the rate constant, k.
rate $=$ \qquad $\mathrm{moldm}^{-3} \mathrm{~s}^{-1}$
units of $k=$ \qquad
(iii) Calculate the relative rate for experiment 4.

$$
\begin{equation*}
\text { relative rate for experiment } 4= \tag{1}
\end{equation*}
$$

(d) (i) Suggest the mechanism for the reaction of 2-chlorobutane with iodide ions. Draw out the steps involved, including the following.

- all relevant lone pairs and dipoles
- curly arrows to show the movement of electron pairs
- the structure of any transition state or intermediate
(ii) This reaction was carried out using a single optical isomer of 2-chlorobutane.

Use your mechanism in (i) to predict whether the product will be a single optical isomer or a mixture of two optical isomers. Explain your answer.
\qquad
\qquad
(e) (i) State the number of peaks that would be seen in the carbon-13 NMR spectrum of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}$.
\qquad
(ii) There are two isomers of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}$ that have fewer peaks in their carbon-13 NMR spectra than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}$.

Draw the structures of the isomers and state the number of peaks for each isomer.

number of peaks $=$ \qquad
isomer 2
number of peaks $=$ \qquad

Question 3 starts on the next page.

3 (a) In a molecule of SOCl_{2} the sulfur atom has four bonds.
Draw a 'dot-and-cross' diagram of SOCl_{2}. Show the outer shell electrons only.
(b) When SOCl_{2} is reacted with a carboxylic acid to produce an acyl chloride, two acidic gases are formed.

$$
\mathrm{SOCl}_{2}(\mathrm{I})+\mathrm{RCO}_{2} \mathrm{H}(\mathrm{I}) \rightarrow \mathrm{RCOCl}(\mathrm{I})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

A 1.00 g sample of a carboxylic acid $\mathrm{RCO}_{2} \mathrm{H}$ was treated in this way, and the gases were absorbed in $60.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{moldm}^{-3} \mathrm{NaOH}(\mathrm{aq})$, an excess.
(i) Write equations for the reactions between

NaOH and HCl , \qquad
NaOH and SO_{2}. \qquad

The excess NaOH was titrated with $0.500 \mathrm{moldm}^{-3} \mathrm{H}^{+}(\mathrm{aq})$. It required $10.8 \mathrm{~cm}^{3}$ of the $\mathrm{H}^{+}(\mathrm{aq})$ solution to reach the end-point.
(ii) Calculate the total number of moles of NaOH that reacted with the SO_{2} and HCl .

$$
\text { moles of } \mathrm{NaOH}=
$$

(iii) Calculate the number of moles of $\mathrm{RCO}_{2} \mathrm{H}$ that produced the SO_{2} and HCl .

$$
\begin{equation*}
\text { moles of } \mathrm{RCO}_{2} \mathrm{H}= \tag{1}
\end{equation*}
$$

(iv) Hence calculate the M_{r} of the carboxylic acid, $\mathrm{RCO}_{2} \mathrm{H}$.

$$
M_{\mathrm{r}} \mathrm{RCO}_{2} \mathrm{H}=
$$

(v) The R group contains carbon and hydrogen only.

Suggest the molecular formula of $\mathrm{RCO}_{2} \mathrm{H}$.
\qquad
(c) The following synthetic route shows how a carboxylic acid can be converted into an amine.

(i) Suggest a reagent for step 3.
\qquad
Angelic acid, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$, is a natural product isolated from the roots of the angelica plant.

- Angelic acid reacts with $\mathrm{H}_{2}+\mathrm{Ni}$ to form $\mathrm{T}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$.
- T undergoes the above synthetic route to form the amine $\mathbf{U}, \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}$.
- U can also be made by reacting 1-bromo-2-methylbutane with ammonia.

Both angelic acid and \mathbf{T} exist as stereoisomers.
(ii) Suggest structures for angelic acid, \mathbf{T} and \mathbf{U}.

\square
(iii) State the type of stereoisomerism shown by angelic acid and \mathbf{T}.
angelic acid \qquad
compound \mathbf{T} \qquad

4 (a) A number of isomers with the formula $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}$ exist. Their general formula is $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-\mathrm{n}} \mathrm{Cl}_{\mathrm{n}}\right] \mathrm{Cl}_{3-\mathrm{n}} \cdot \mathrm{nH}_{2} \mathrm{O}$.
Each isomer contains a six co-ordinated $\mathrm{Cr}($ III) ion in an octahedral complex.
Water molecules not directly bonded with the Cr atom are held in the crystal lattice as water of crystallisation.
The $\mathrm{Cr}-\mathrm{Cl}$ bond is not easily broken and so chloride bonded with the $\mathrm{Cr}(\mathrm{III})$ ion in the complex does not react.
1.00 g samples of three of the isomers, \mathbf{A}, \mathbf{B} and \mathbf{C}, were dissolved in separate samples of water. An excess of $\mathrm{AgNO}_{3}(\mathrm{aq})$ was added to each and the mass of $\mathrm{AgCl}(\mathrm{s})$ formed was measured.

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})
$$

The number of moles of $\mathrm{AgCl}(\mathrm{s})$ formed was calculated. The table shows the results.

isomer	moles of AgCl formed from 1.00 g of isomer
A	3.75×10^{-3}
B	7.50×10^{-3}
C	1.13×10^{-2}

(i) Calculate the M_{r} of $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}$.

$$
\begin{equation*}
M_{\mathrm{r}} \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}= \tag{1}
\end{equation*}
$$

(ii) Use the data in the table above to calculate the value of n for each of the isomers, A, B and \mathbf{C}. Complete the table below with the values of n and the molecular formula of each isomer, in the style of the general formula given above.

Show your working for at least one calculation of n.

isomer	n	molecular formula
A		
B		
C		

(b) Two isomers have the same shape and their formula is $\mathrm{Ni}\left(\mathrm{R}_{3} \mathrm{P}\right)_{2}(\mathrm{CN})_{2}$, where $\mathrm{R}=\mathrm{CH}_{3}$. Only one of these isomers has a dipole moment.
(i) Name the type of isomerism shown by $\mathrm{Ni}\left(\mathrm{R}_{3} \mathrm{P}\right)_{2}(\mathrm{CN})_{2}$.
(ii) Draw structures of these two isomers.

(iii) State which isomer has a dipole moment. Explain your answer.
\qquad
\qquad

5 (a) 1,2-diaminoethane, en, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, is a bidentate ligand.
(i) What is meant by the terms bidentate and ligand?
bidentate \qquad
ligand \qquad
\qquad
(ii) There are three isomeric complex ions with the formula $\left[\mathrm{Cr}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$.

Complete the three-dimensional diagrams of the isomers in the boxes.
You may use $\sqrt{N} \quad$ to represent en.

(b) Copper forms complexes with NH_{3} and en according to equlibria 1 and 2.
equilibrium 1
$\mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})$
equilibrium 2
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{en}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cu}(\mathrm{en})_{2}\right]^{2+}(\mathrm{aq})$
(i) Write the expressions for the stability constants, $K_{\text {stab1 }}$ and $K_{\text {stab2 } 2}$, for equilibria 1 and 2. Include units in your answers.
$K_{\text {stab } 1}=$
units $=$ \qquad
$K_{\text {stab2 }}=$
units $=$ \qquad
(ii) An equilibrium is set up when both en and NH_{3} ligands are added to a solution containing $\mathrm{Cu}^{2+}(\mathrm{aq})$ as shown in equilibrium 3.
equilibrium $3 \quad\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})+2 e n(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cu}(e n)_{2}\right]^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq})$
Write an expression for the equilibrium constant, $K_{\text {eq3 }}$, in terms of $K_{\text {stab1 } 1}$ and $K_{\text {stab2 }}$.
$K_{\text {eq3 }}=$
(iii) The numerical values for these stability constants are shown.

$$
K_{\text {stab1 } 1}=1.2 \times 10^{13} \quad K_{\text {stab2 } 2}=5.3 \times 10^{19}
$$

Calculate the value of $K_{\text {eq3 }}$ stating its units.
$K_{\text {eq3 }}=$ \qquad unit $=$ \qquad
(c) ΔS^{\ominus} values for equilibria 1 and 2 differ greatly, as can be seen in the table. All values are at a temperature of 298 K .

equilibrium	$\Delta H^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta S^{\ominus} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$	$\Delta G^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$
1	-92	-60	-74
2	-100	+40	

(i) Explain why $\Delta S_{\text {eq } 2}^{\ominus}$ is so different from $\Delta S_{\text {eq } 1}^{\ominus}$.
\qquad
\qquad
(ii) Calculate $\Delta G_{\text {eq2 }}^{\ominus}$ at 298 K .

$$
\Delta G_{\mathrm{eq} 2}^{\ominus}=
$$

\qquad
(iii) What conclusion can be made about the relative feasibility of equilibria 1 and 2?

Explain your answer.
\qquad
(iv) Using data from the table, suggest a value of ΔH^{\ominus} for equilibrium 3.
\qquad
(v) State the type of reaction that is occurring in equilibrium 2.

6 The table lists some organic acids and their $\mathrm{p} K_{\mathrm{a}}$ values.

acid	formula	$\mathrm{p} K_{\mathrm{a}}$
ethanoic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	4.76
chloroethanoic acid	$\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	2.86
aminoethanoic acid (glycine)	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	9.87

(a) (i) State the relationship between $\mathrm{p} K_{\mathrm{a}}$ and the strength of an acid.
\qquad
(ii) State the mathematical relationship between $\mathrm{p} K_{\mathrm{a}}$ and the acidity constant K_{a}.
\qquad
(iii) Give reasons for why the $\mathrm{p} K_{\mathrm{a}}$ value for chloroethanoic acid is smaller than that for ethanoic acid.
\qquad
\qquad
\qquad
(b) (i) Use the zwitterionic structure for aminoethanoic acid (glycine) in aqueous solution to write an equation for its dissociation giving $\mathrm{H}^{+}(\mathrm{aq})$ ions.
\qquad
(ii) Calculate the pH of a $0.100 \mathrm{moldm}^{-3}$ solution of aminoethanoic acid.

$$
\mathrm{pH}=
$$

A $10.0 \mathrm{~cm}^{3}$ sample of $0.100 \mathrm{moldm}^{-3}$ aminoethanoic acid (glycine) was titrated with $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. After $20.0 \mathrm{~cm}^{3}$ of NaOH , an excess, had been added, the pH was found to be 12.5.
(iii) Using the following axes, sketch a graph showing how the pH changes during this titration.

7 Compounds $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} are isomers of each other with the molecular formula $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}$. All four isomers contain a benzene ring.
Only one of the isomers contains a chiral centre.
The results of six tests carried out on $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} are shown in the table.

test		observations with each isomer			
		W	X	Y	Z
1	add cold $\mathrm{AgNO}_{3}(\mathrm{aq})$	white ppt. forms immediately	none	white ppt. forms very slowly	none
2	heat with $\mathrm{NaOH}(\mathrm{aq})$, then add dilute $\mathrm{HNO}_{3}+\mathrm{AgNO}_{3}(\mathrm{aq})$	white ppt.	none	white ppt.	none
3	add $\mathrm{NaOH}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$	none	pale yellow ppt.	none	none
4	warm with Fehling's solution	none	none	red ppt.	none
5	add cold, dilute, acidified $\mathrm{KMnO}_{4}(\mathrm{aq})$	no change	no change	no change	decolourises
6	add $\mathrm{Br}_{2}(\mathrm{aq})$	no change	no change	no change	decolourises and forms white ppt.

(a) Use the experimental results in the table above to determine the group(s), in addition to the benzene ring, present in the four isomers $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z}.

Complete the table below, identifying the group(s) present in each isomer.

(b) Isomers $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} all have the molecular formula $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}$.
(i) Use the information in (a) to suggest a structure for each of these isomers and draw these in the boxes.

(ii) Draw a circle around the chiral centre in one of the above structures.

8 (a) The amino acid tyrosine can be synthesised from phenol by the route shown.

step 3

tyrosine
(i) Name the mechanism occurring in the following steps.
step 1
step 2
(ii) What type of reaction is occurring in step 3?
\qquad
(iii) Suggest reagents and conditions for each of the following steps.
step 1 \qquad
step 2 \qquad
step 3 \qquad
step 5 \qquad
(iv) Draw the structures of the products of the reactions of tyrosine with an excess of each of the following reagents.

(b) The dipeptide phe-tyr has the following structure.

A mixture of this dipeptide (phe-tyr) and its two constituent amino acids (phe and tyr) was subjected to electrophoresis in a buffer at pH 12 . At the end of the experiment the following results were seen. Spots \mathbf{R} and \mathbf{S} remained very close together.

The three spots are due to the three species phe, tyr and phe-tyr.
(i) Which species is responsible for spot \mathbf{P} ? Explain your answer.
\qquad
\qquad
(ii) Suggest why the other two species give spots \mathbf{R} and \mathbf{S} that are so close together.
\qquad
\qquad

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

 Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

