Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

Paper 5 Planning, Analysis and Evaluation
MARK SCHEME
Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

| Question | Answer |
| :---: | :--- | :--- |
| 1 (a) | Any two from
 Hazard: toxic to aquatic organisms
 And
 Precaution: do not dispose of (lead and lead compounds) into the water waste / down the drain
 Or
 Hazard: may cause long-term damage to aquatic environment
 And
 Precaution: do not dispose of (lead and lead compounds) into the water waste / down the drain
 Or
 Hazard: harmful by inhalation
 And
 Precaution: carry out in fume cupboard, well-ventilated room
 Or
 Hazard: harmful by swallowing
 And
 Precaution: wear gloves |

Question	Answer	Marks
2(a)(i)	To calibrate the instrument	1
2(a)(ii)	In case some of the light is absorbed by the water/fingerprints / dirt	1
2(b)(i)	4.74 g	1
2(b)(ii)	Dissolve (4.74 g / answer to 2(b) of) KMnO_{4} in (a container with) (distilled water) (in less than $1 \mathrm{dm}^{3}$ of water)	1
	(Transfer / add to) a ($1 \mathrm{dm}^{3}$) volumetric flask; make to mark (with [distilled] water) (and shake) NOTE: Distilled/deionised/purified water must be mentioned for 2 marks to be awarded.	1
2(b)(iii)	The mass of KMnO_{4} is too small to weigh accurately (on a 2dp balance).	1
2(c)	529.5	1
2(d)(i)	All points plotted correctly	1
	Line of best fit drawn	1
2(d)(ii)	The concentration is (directly) proportional to the absorbance,	1
	The more ions there are, the more light is absorbed (ora)	1
2(d)(iii)	Yes because most of the points lie close to the line.	1
2(e)(i)	22.50 (cm $\left.{ }^{3}\right) 2.50\left(\mathrm{~cm}^{3}\right)$	1
2(e)(ii)	Burette (with $0.1 \mathrm{~cm}^{3}$ graduations)	1
2(f)(i)	Read value from graph. Expected result $2.50 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$	1
$2(\mathrm{f})$ (ii)	$2.50 \times 10^{-4} \times 54.9 \times(100 / 1000)=1.37 \times 10^{-3} \mathrm{~g}$	1

Question	Answer	Marks
$2(\mathrm{~g})$	$\frac{1.37 \times 10^{-3}}{1.209} \times 100=0.113 \%$	$\mathbf{1}$
$2(\mathrm{~h})$	So that any excess oxidising agent will not react with / oxidise the Fe ${ }^{2+}(\mathrm{aq})$	$\mathbf{1}$
		$\mathbf{1 8}$

