CHEMISTRY

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks
1(a)	solubility increases down the group	1
	$\Delta H_{\text {latt }}$ and $\Delta H_{\text {hyd }}$ both decrease or $\Delta H_{\text {latt }}$ and $\Delta H_{\text {hyd }}$ both become less exothermic / more endothermic	1
	$\Delta H_{\text {latt }}$ decreases / changes more (than $\Delta H_{\text {hyd }}$ as OH^{-}being smaller than M^{2+})	1
	$\Delta H_{\text {sol }}$ becomes more exothermic / more negative / less endothermic / less positive	1
1(b)(i)	$\begin{aligned} & \Delta H_{\mathrm{r} 1}-(538+2 \times 230+394)=-(1216+286) \\ & \Delta H_{\mathrm{r} 1}-1392=-1502 \end{aligned}$	1
	$\Delta H_{\mathrm{r} 1}=-110$	1
1(b)(ii)	let $\Delta H_{\mathrm{f}}\left(\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})\right)=\mathrm{y}$ $2 y-538=-1216-394-286-26$	1
	$y=-692$	1
1(b)(iii)	$\begin{aligned} & \Delta H_{\mathrm{r} 3}-538-2(230+394)=-538-2(692) \\ & \Delta H_{\mathrm{r} 3}=-136 \end{aligned}$	1
1(b)(iv)	$\Delta H_{r 3}$ will be identical to ΔH_{r}, / unchanged	1
	as the reaction is the same, or: $2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCO}_{3}^{-}(\mathrm{aq}) \text { or }$ metal ions stay in solution/metal ions are unchanged / are spectators	1

Question	Answer	Marks
$1(\mathrm{c})$	more gaseous moles are being consumed (in reaction 3) or more $\mathbf{C O}_{2}$ moles are being consumed (in reaction 3)	1
	ΔS is therefore expected to be more negative/less positive for reaction 3.	1
		13

Question	Answer	Marks
2(a)(i)		$1+1$
	16 electrons on each diagram	1
2(a)(ii)	$\mathrm{HNC}=115-125^{\circ} \mathrm{AND} \mathrm{NCO}=180^{\circ}$	1
2(a)(iii)	cyanic acid, because it's a stronger / higher bond enthalpy / triple / $\mathrm{C}=\mathrm{N} /$ more electrons involved bond	1
2(b)(i)	$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left([\mathrm{HNCO}] K_{\mathrm{a}}\right)=\sqrt{ }\left(0.1 \times 1.2 \times 10^{-4}\right)$ or 3.46×10^{-3}	1
	$\mathrm{pH}=\log \left[\mathrm{H}^{+}\right]=2.5$ (2.46)	1
2(b)(ii)	$\mathrm{Na}_{2} \mathrm{CO}_{3}+2\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO} \longrightarrow 2 \mathrm{NaNCO}+\mathrm{CO}_{2}+2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$	1
2(c)(i)	$\begin{aligned} & \left(\mathrm{n}\left(\mathrm{OH}^{-}\right) \text {at start }=(2 \times 0.1 \times 30) / 1000=6 \times 10^{-3} \mathrm{~mol}\right) \\ & \left(\mathrm{n}\left(\mathrm{OH}^{-}\right) \text {reacted }=(0.1 \times 20) / 1000=2 \times 10^{-3} \mathrm{~mol}\right) \\ & \mathrm{n}\left(\mathrm{OH}^{-}\right) \text {remaining }=(6-2) \times 10^{-3}=4 \times 10^{-3} \mathrm{~mol},\left(\text { in } 50 \mathrm{~cm}^{3}\right) \end{aligned}$	1
	so $\left[\mathrm{OH}^{-}\right]_{\text {end }}=\left(4 \times 10^{-3} \times 1000\right) / 50=0.08 \mathrm{~mol} \mathrm{dm}^{-3}$	1

Question	Answer	Marks
2(c)(ii)	$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-14}\right) / 0.08=1.25 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3}$	1
	so $\mathrm{pH}=-\log \left(1.25 \times 10^{-13}\right)=12.9$	1
2(c)(iii)	curve starts at $2.46 / 2.5$	1
	vertical portion (end point) at vol added $=10.0 \mathrm{~cm}^{3}$	1
	finishes at $\mathrm{pH}=12.9$	1
2(d)(i)	monodentate: (a species that) forms one dative / coordinate bond	1
	ligand: a species that uses a lone pair of electrons to form a dative / coordinate bond to a metal atom / metal ion	1
2(d)(ii)	$\left[\mathrm{Ag}(\mathrm{NCO})_{2}\right]^{-}$or $\left[\mathrm{Ag}(\mathrm{OCN})_{2}\right]^{-}$correct formula	1
	correct charge	1
2(e)(i)	$\mathrm{n}\left(\mathrm{BaCO}_{3}\right)=1.66 / 197.3=8.4(1) \times 10^{-3} \mathrm{~mol}$	1
2(e)(ii)	$\mathrm{n}(\mathrm{RNCO})=8.41 \times 10^{-3} \mathrm{~mol}$, so $\mathrm{M}_{\mathrm{r}}=1 /\left(8.41 \times 10^{-3}\right)=119$	1
2(e)(iii)	molecular formula $=\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}$	1

Question	Answer	
2(e)(iv)		

Question	Answer	Marks
$3(\mathrm{a})$ (i)	+3 or Co^{3+}	$\mathbf{1}$
3(a)(ii)	oxidation	$\mathbf{1}$
	ligand displacement/replacement/exchange/substitution	$\mathbf{1}$

Question	Answer	Marks
4(a)(i)	optical, because it contains a / one chiral C-atom or chiral C-atoms or chiral atom / centre or C^{*} indicated or C with 4 different groups	1
4(a)(ii)	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}+3 \mathrm{H}_{2} \longrightarrow \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ correct formulae	1
	balancing	1
4(b)(i)	electrophilic substitution	1
4(b)(ii)	step 3 reduction	1
	step 5 substitution/hydrolysis	1
4(b)(iii)	step $1 \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}+\mathrm{AlCl} 3 / \mathrm{AlBr}_{3} / \mathrm{FeCl}_{3} / \mathrm{FeBr}_{3}$	$1+1$
	step $2 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$ conc $\left(\mathrm{T}<55{ }^{\circ} \mathrm{C}\right)$	1
	step $3 \mathrm{Sn}+\mathrm{HCl}$	1
	step $4 \mathrm{HNO}_{2}\left(\right.$ or $\left.\mathrm{NaNO}_{2}+\mathrm{HCl}\right)\left(\right.$ at $\left.\mathrm{T}<10^{\circ} \mathrm{C}\right)$	1
	the two temperatures for steps 2 and 4	1
4(c)(i)	$\mathbf{H}_{\mathbf{2}}+\mathrm{Pt}$ or $\mathbf{H}_{\mathbf{2}}+\mathrm{Ni}+$ heat or pressure	1

Question	Answer		Marks
4(c)(ii)	 $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{CH}_{3}$ and OH on the correct ring atoms i.e. structure is correct		1
	all Hs on the same side of the ring		1
		Total:	15

Question	Answer				Marks
5(a)	J	K	L	M	
	amine methyl ketone	aromatic amine aldehyde	amine methyl ketone	amide	
	J and L correct				$1+1$
	K correct				$1+1$
	M correct				1
5(b)(i)	hydrolysis				1
5(b)(ii)	\mathbf{P} is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$				1
	Q is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Na}$				1

Question

Question	Answer	Marks
6(a)	Any of the three methods possible. Any 4 of the 5 points for each method available for maximum 4 marks. Method 1 1 Ensure both solutions (A and \mathbf{B}) at $40^{\circ} \mathrm{C}$ before mixing mix known volumes of \mathbf{A} and \mathbf{B} and start the clock at known time take out a sample / \mathbf{X} and add it to ice-cold solvent titrate against HCl repeat at time at known time intervals Method 2 1 Ensure both solutions (A and \mathbf{B}) at $40^{\circ} \mathrm{C}$ before mixing mix known volumes of \mathbf{A} and \mathbf{B} and start the clock at known time pour into ice-cold solvent or pour ice-cold solvent in titrate against HCl repeat with different concentrations of either A or B, or repeat using different times Method 3 1 Ensure both solutions (A and \mathbf{B}) at $40^{\circ} \mathrm{C}$ before mixing 2 mix known volumes of \mathbf{A} and \mathbf{B} and start the clock and add pH meter 3 at a known time.... 4 record the pH 5 repeat pH readings at known time intervals	4
6(b)(i)	from 1 and 3: when [RCl] is trebled, so is rate, so order w.r.t. [RCl] = 1	1
	from 1 and 2: when both concentrations are doubled, rate doubles so $\left[\mathrm{OH}^{-}\right]$has no effect on rate, so order w.r.t. $\left[\mathrm{OH}^{-}\right]=0$	1
6(b)(ii)	rate $=k[R C l]$ AND units: $\sec ^{-1} 1 / \mathrm{s}$	1
6(b)(iii)	relative rate $=2.0$	1

Question	Answer	Marks
6(c)(i)	$\mathrm{C}-\mathrm{Cl}$ dipole and first curly arrow	1
	intermediate cation	1
	OH^{-}with lone pair and curly arrow	1
6(c)(ii)	Beginning with candidate's mechanism in (c)(i): If $\mathbf{S}_{\mathbf{N}} 1$: racemate / mixture of/two optical isomers will be formed, because: the intermediate is planar/ has a plane of symmetry / OH^{-}can approach from top or bottom or from any direction If $\mathbf{S}_{\mathbf{N}} \mathbf{2}$: one optical isomer because attack always from fixed direction / from same side / the "configuration" always inverts / there is an asymmetric transition state	1

Question	Answer						Marks
6(d)(i)	δ value	number of H atoms	group	splitting	result with $\mathrm{D}_{2} \mathrm{O}$		
	1.4	3	CH_{3} / methyl	doublet	peak remains		
	2.7	1	OH / hydroxyl / alcohol	singlet	peak disappears		
	4.0	1	CH	quartet	peak remains		
	the three groups are in their correct places wrt the δ values						1
	no. of H atoms for each peak agrees with group column						1
	splitting patterns doublet, singlet and quartet are assigned to correct groups						1
	peak identified as OH disappears with $\mathrm{D}_{2} \mathrm{O}$, no other peak disappears						1
	Total:						16

