Cambridge
International
AS \& A Level

CHEMISTRY
9701/42
Paper 4 A Level Structured Questions
October/November 2016
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question			Answer	Marks
1(a)	(an element) forming (one or more stable) ions with incomplete d subshell [1]			1
1 (b)(i)		co-ordination number	oxidation number	
	$\left[\mathrm{Ni}(\mathrm{CN})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$	4	+2	
	$\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$	6	+3	
				2
1 (b)(ii)	dative (covalent)/co-ordinate			1
1(b)(iii)	 or or			
1(c)(i)	(concentrated) hydrochloric acid / soluble chloride ion			
1(c)(ii)	ligand exchange/substitution			1
1(d)(i)	cis-trans (isomerism) / geometric(al)			1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Question	Answer		Marks
1 (d)(ii)	one 3D isomer one correct isomer other isomer correct in 3D allow		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
		Total:	12

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Question	Answer	Marks
2(a)	$\mathrm{NaN}_{3} \rightarrow \mathrm{Na}+1.5 \mathrm{~N}_{2}$	1
2(b)	all atoms must have 8 outer electrons coding for electrons correct $=16(10 \times 5 \cdot 1$ 口) central N must have 8 bonding electrons (inc. $5 \cdot$ and no non-bonded electrons) allow	1 1
2(c)(i)	(energy change) when 1 mole of an (ionic) compound is formed or (energy change) when $\mathbf{1}$ mole of an ionic solid/lattice/crystal is formed (from) gas (phase) ions/gaseous ions (under standard conditions)	1
2(c)(ii)	forming an (ionic) bond	1

Page 5
 Mark Scheme
 Cambridge International AS/A Level - October/November 2016
 42

Question	Answer		Marks
2(c)(iii)	$\begin{aligned} & \text { use of } \Delta H_{i 1} 494\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \Delta H_{\mathrm{f}}^{\mathrm{o}}=+107+494+142-732 \\ & \Delta H_{\mathrm{f}}=+11\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$		$\begin{array}{ll} 1 & \\ 1 & \\ 1 & 3 \end{array}$
2(c)(iv)	(ionic) radius /size of Na^{+}is smaller (so stronger attraction to azide ion) OR ionic radius increases down the group		
		Total:	11

Question	Answer	Mark
3(a)	$\begin{array}{ll} \mathrm{Fe} & {[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}} \\ \mathrm{Fe}^{3+} & {[\mathrm{Ar}] 3 d^{5}} \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
3(b)(i)	(catalyst is in) the same phase/state as the reactants	1
3 (b)(ii)	$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$	1
3 (b)(iii)	(two) negatively-charged species repel each other	1
3(b)(iv)	Equation 1: $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ Equation 2: $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Fe}^{3+}$	1 1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Question	Answer	Marks
4(a)	d orbitals split into lower and upper orbitals light/photon absorbed electron(s) promoted/excited/jumps up to (higher) (d-) orbital or electron(s) moves/jumps (from lower ($\mathrm{d}-$)) to higher ($\mathrm{d}-$) orbital	1
4(b)(i)	$\begin{aligned} & \mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { or ionic } \mathrm{Cu}+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { correct species } \\ & \text { correct balancing } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
4(b)(ii)	$\begin{aligned} & \text { moles } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=0.1 \times 22.4 / 1000=\mathbf{2 . 2 4} \times \mathbf{1 0}^{-3} \\ & \text { moles of } \mathrm{Cu}^{2+} \text { in } 25 \mathrm{~cm}^{3}=\mathbf{2 . 2 4} \times \mathbf{1 0}^{-3} \\ & \text { moles of } \mathrm{Cu}^{2+} \text { in } 250 \mathrm{~cm}^{3}==2.24 \times 10^{-2} \\ & \text { mass of } \mathrm{Cu}=2.24 \times 10^{-2} \times 63.5=1.4224 \mathrm{~g} \\ & \% \mathrm{Cu}=1.42 / 1.75 \times 100=\mathbf{8 1 . 1} \text { or } \mathbf{8 1 . 3} \% \end{aligned}$	
		9

Question	Answer	Marks
5(a)	$K_{\mathrm{a}}=\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}$	1
5(b)(i)	a solution that resists changes in pH when small amounts of acid and base/alkali are added	1
5(b)(ii)	```addition of acid: }\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{HPO}}{4}{2-}->\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{PO}}{4}{-}\mathbf{OR H addition of base: }\mp@subsup{\textrm{HO}}{}{-}+\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{PO}}{4}{-}->\mp@subsup{\textrm{HPO}}{4}{2-}+\mp@subsup{\textrm{H}}{2}{}\textrm{O OROH}+\mp@subsup{HPOO4}{2-}{2-}\mp@subsup{\textrm{H}}{2}{}\textrm{O}+\mp@subsup{\textrm{PO}}{4}{3-```	1
5(c)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-7.4}=3.98 \times 10^{-8}} \\ & {\left[\mathrm{HPO}_{4}{ }^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]} \\ & \left(\left[\mathrm{HPO}_{4}{ }^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]\right)=6.31 \times 10^{-8} / 3.98 \times 10^{-8}=1.58-1.6 \end{aligned}$	
5(d)(i)	$\begin{aligned} & \mathrm{HCl}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{C} t \text { OR } \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \mathrm{OR} \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-} \end{aligned}$	1

Question	Answer	Marks	
$5(\mathrm{~d})(\mathrm{ii})$	$\mathrm{NaOH}+\mathrm{HPO}_{4}{ }^{2-} \rightarrow \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+} \mathrm{OR} \mathrm{OH}^{-}+\mathrm{HPO}_{4}{ }^{2-} \rightarrow \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR} \mathrm{H}_{2} \mathrm{O}+\mathrm{HPO}_{4}{ }^{2-} \rightarrow \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}$	1	
		Total:	10

Question	Answer	Marks
6(a)		1
6(b)(i)	ratio of the concentration of a solute in the (two immiscible) solvents/liquids at equilibrium	
6(b)(ii)	$\begin{array}{ll} K_{\text {partition }}=(0.06 / 40) /(0.25-0.06 / 10) & \text { or reversed ratio: } K_{\text {partition }}=(0.25-0.06 / 10) /(0.06 / 40) \\ K_{\text {partition }}=0.079(0.0789) & K_{\text {partition }}=12.7 / 13.0 \end{array}$	1

Question	Answer			Marks
6(c)	reagent	structure of product(s)	type of reaction	
	$\begin{aligned} & \text { excess } \\ & \mathrm{Br}_{2}(\mathrm{aq}) \end{aligned}$	 addition of bromine to alkene $2 \times \mathrm{Br}$ substituted in phenol at positions $\mathbf{2}$ and 6	(electrophilic) substitution or (electrophilic) addition	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	NaBH_{4}		reduction (allow nucleophilic addition)	1

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Question	Answer					Marks
	excess hot $\mathrm{NaOH}(\mathrm{aq})$ all three reac	 on types		hydrolysis		$1+1$ 1
6(d)	mixture of (two) optical/stereo isomers formed					1
	Total:					12

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Question	Answer	Marks
7(a)(i)	electrophilic substitution	1
7(a)(ii)	$\left(\mathrm{Br}_{2}+\mathrm{AlBr}_{3}\right) \rightarrow \mathrm{Br}^{+}+\mathrm{AlBr}_{4}^{-}$ curly arrow from ring system to Br^{+} correct intermediate curly arrow from C-H bond into ring and loss of H^{+}	1 $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
7(b)	both amide	1
7(c)(i)	step 1, AlBr_{3} and $\mathrm{CH}_{3} \mathrm{Br} \quad$ OR other suitable halogen instead of Br step 2, KMnO_{4} or potassium manganate(VII) step 3, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and conc. HNO_{3} step 4. Sn and (conc.) HCl (heat)	

Page 13	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Question	Answer		Marks
7(c)(ii)	 R S T	1 mark for each correct structure	3
7(d) (i)		1 mark for each correct structure	2
7(d)(ii)	reduction		1

Question	Answer	Marks
7(e)(i)	1 mark for each correct structure	2
7(e)(ii)		1
7(e)(iii)	(precipitate) compound is less polar/more non-polar/non-ionic resulting in less hydrogen bonding to water	1
	Total:	20

Page 15	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Page 16	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	42

Question	Answer					Marks
8(d)(i)	8/ppm	type of proton	number of protons	splitting		4
	0.9	alkane $/ \mathrm{CH} / \mathrm{CH}_{3}$	6	doublet		
	1.6	alkane/CH	1	[multiplet]		
	2.4	alkyl next to $\mathrm{C}=\mathrm{O} / \mathrm{CH}_{(2)} \mathrm{CO} / \mathrm{CH}$	2	doublet		
	11.5	$\mathrm{OH} / \mathrm{CO}_{2} \mathrm{H} /$ carboxylic acid	1	singlet		
8(d)(ii)						1
8(e)	CDCl_{3} OR D2 $\mathrm{O}, \mathrm{DMSO}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CC} l_{4}$					1
	Total					13

