Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CHEMISTRY

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	$\mathbf{9 7 0 1}$	$\mathbf{4 2}$

Question	Answer	Marks
1 (a) (i)	dative (covalent) or coordinate Hydrogen/H (boding)	2
(ii)	octahedral	1
(iii)	$\begin{aligned} & \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{MgO}+2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2} \\ & \text { any three of } \\ & \text { (solid) dissolves/turns to liquid } \\ & \text { condensation on tube } \\ & \text { white solid (forms/remains) } \\ & \text { brown fumes (evolved) } \\ & \text { gas formed that relights a glowing splint } \end{aligned}$	4
(iv)	M_{r} values: $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}=256.3 \mathrm{MgO}=40.3$ or (loss in molar mass $=256.3-40.3=$) 216 percentage loss $=100 \times 216 / 256.3=84.3 / 84.4 \%$	2
(b)	(cat)-ionic radius/ion size increases (down the group) less polarisation/distortion of nitrate ion/ $\mathrm{NO}_{3}{ }^{-}$	2
(c)	$2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}$	1
		[Total: 12]
2 (a) (i)	(an acid that is) partially/incompletely ionised/dissociated	1
(b) (i)	$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$ or $K_{\mathrm{a}}=10^{-\mathrm{p} K a}$	1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
(ii)	ethanoic acid (1) is more acidic than propanoic acid (2) due to smaller electron-donating ($\mathrm{R} /$ /alkyl) group/less electron-donating (R/alkyl) group(s) 2-chloropropanoic acid (3) is more acidic than propanoic acid (2) due to electron-withdrawing/electronegative (Cl/chlorine) atom 2-chloropropanoic acid (3) is more acidic than 3-chloropropanoic acid (4) since the $\mathrm{C} /$ /chlorine/electronegative atom is closer to the $\mathrm{CO}_{2}^{-} /$acid	3
(c) (i)	M1: voltmeter/V and salt bridge labelled M2: Cu and $\mathrm{Cu}^{2+} / \mathrm{CuSO}_{4}$ (any soluble $\mathrm{Cu}(\mathrm{II})$ salt) M3: H_{2} (arrow in) and $\mathrm{H}^{+} / \mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4} /$ any mineral acid M4 Pt and one solution at $1 \mathrm{M} / 1 \mathrm{moldm}^{-3} \mathrm{OR}_{2}$ at 1 atm	4
(ii)	$E_{\text {cell }}^{9}=0.34(\mathrm{~V})$ and $\left(\mathrm{Cu}^{2+}\right) / \mathrm{Cu}$ is the positive electrode	1
d (i)	$\begin{aligned} & K_{\mathrm{a}}=1.23 \times 10^{-5} \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}\right)=\sqrt{ }\left(1.23 \times 10^{-5} \times 0.1\right)=1.11 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & \mathrm{pH}=3.0(2.96) \text { ecf from }\left[\mathrm{H}^{+}\right] \end{aligned}$	2

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
(ii)	$\begin{aligned} & E=0.0+0.059 \log \left(1.11 \times 10^{-3}\right) \mathrm{OR}=-0.17(4) \mathrm{V} \\ & \text { so new } E_{\text {cell }}=0.34+0.17=\mathbf{0 . 5 1 V} \\ & \text { ecf from (d)(i) } \end{aligned}$	2
		[Total: 14]
3 (a) (i)	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$	1
(ii)	reaction 1: NH_{3} (in ethanol) under pressure (+ heat) or heat NH_{3} in a sealed tube reaction 2: $\mathrm{KCN} / \mathrm{NaCN}$ and heat/reflux (in ethanol) reaction 3: $\mathrm{H}_{2}+\mathrm{Ni}$ or LiAlH_{4}	3
(b) (i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}(+) \mathrm{OH}^{-}$	1
(ii)	ethylamine is more basic than ammonia... because of electron-donating (alkyl/ethyl/R) group (in ethylamine) which makes the lone pair (on N) more available for donation or the lone pair (on N) more available for a proton $/ \mathrm{H}^{+}$	2
(c) (i)	A solution which resists/minimises/roughly maintains changes in pH when (small amounts of) H^{+}or OH^{-}are added	1
(ii)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \\ & \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}+\mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl} \end{aligned}$	2
		[Total: 10]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
4 (a) (i)	 (cis)	2
(ii)	cis is (more) polar due to both $\mathrm{Cl}^{(\delta-)}$ on same side or cis is (more) polar as dipoles do not cancel/unsymmetrical or trans is non-polar as it is bond dipoles cancel	1
(iii)	(This can only be cis) its mirror image is the same/superimposable or the distance between two coordinating nitrogens/oxygens is too small to bond trans or difficult for the NH_{2} and O to change places (since 5 -memebered rings can only bridge adjacent positions)	1
(b) (i)	It's not square planar or it's tetrahedral	1
(ii)	must be 3D structure (i.e. tetrahedral-like) or etc	1
		[Total: 6]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
5 (a) (i)	$\begin{aligned} & K_{\text {stab }}=\frac{\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) 4^{2+}\right.}{\left[\mathrm{Cd}^{2+}\right]}\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]^{4} \\ & \text { units: } \mathrm{mol}^{-4} \mathrm{dm}^{12} \end{aligned}$	2
(ii)		2
(b) (i)	(each complex is formed by) making ($4 \times$)N-Cd bonds and breaking ($6 \times$) O-Cd bonds or same types of/similar bonds forming/breaking or same number of bonds forming/breaking	1
(ii)	$\Delta S=(\Delta H-\Delta G) / T=(60.7-56.5) \times 1000 / 298=(+) \mathbf{1 4 / (+) 1 4 . 1}$	1
(iii)	fewer moles (of solutes) are forming (one mole of) the complex (so less loss of disorder) or one en displaces two $\mathrm{H}_{2} \mathrm{O}$ whereas one $\mathrm{CH}_{3} \mathrm{NH}_{2}$ only displaces one $\mathrm{H}_{2} \mathrm{O}$	1
(iv)	The $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right]^{2+}$ /equilibrium 2 complex (is more stable) because: either $K_{\text {stab }}$ is greater or ΔG^{\ominus} is more negative.	1
		[Total: 8]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
6 (a)	essential mark M1 the reactants/substrate has a shape complementary/specific to active site - can be awarded from a labelled diagram as below or diagrams showing this specificity clearly any two of M2: reactants/substrate binds to/fits into the active site of the enzyme M3: (Interaction with site) causes a specific bond to be weakened, (which breaks) or lowers activation energy M4: forms an E-S complex M5: products released from enzyme/active site labelled diagrams (products)	3
(b) (i)	$\delta 26$ is CH3-CO $\delta 52$ is CH3-O $\delta 169$ is $\mathbf{C H} 3 \mathbf{C O}$ $\delta 167$ is phenyl-CO Phenyl ethanoate is $\mathbf{B} \quad$ methyl benzoate is \mathbf{A} M1 = any two correct δ linked to phenylethanoate/methyl benzoate M2 $=$ the rest correct	2
(ii)	heat with $\mathrm{H}_{3} \mathrm{O}^{+}$(to hydrolyse the ester) then add $\mathrm{Br}_{2}(\mathrm{aq}) /$ bromine water decolourises/gives white ppt. (with phenol from B)	3
		[Total: 8]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A LeveI - May/June 2016	9701	42

Question	Answer	Marks
$7 \quad$ (a) (i)	labelled with M1: DC power supply + and -/battery / cell/+ and - sign (on cell/electrodes) with a complete circuit M2: buffer solution/electrolyte labelled M3: (amino acid) mixture/ \mathbf{x} on (filter) paper/gel/agarose	3
(ii)	direction of movement related to charge (of amino acids) distance travelled depends on charge $/ M_{\mathrm{r}}$ (of amino acids)	2
(b) (i)	Asp + Val: pH 12 because Asp will be $-\mathrm{CH}_{2} \mathrm{COO}^{-}$(R-group) moves further (to positive electrode than Val) or pH 12 Asp more negative so moves further (to positive electrode) or pH 12 because Asp has a charge of 2 - but Val has a charge of $1-$ or best at pH 7 because Asp will be negatively charged (anionic) but Val neutral	1
(ii)	Lys + Ser: pH 2 because Lys will be $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{3}{ }^{+}$(R-group) moves further (to negative electrode than Ser) or pH 2 Lys more positive so moves further (to negative electrode) or pH 2 because Lys has a charge of 2+ and Ser has a charge of 1+ or pH 7 because Lys is positively charged (cationic) but Ser neutral/zwitterionic	1

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
(iii)	Tyr + Phe: pH 12 because Tyr will be $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}^{-}$(R-group) moves further/more/faster (to positive electrode than Phe) or pH 12 because Tyr has a charge of 2 - but Phe has a charge of 1 -	1
(c) (i)	 M1: for - $\mathrm{CONH}-$ as shown above M2: for rest of molecule and correct connectivity of the bonds	2
(ii)	from the IR spectrum - E is O-H or N-H (allow NH_{2}) - F is $\mathrm{C}=\mathrm{O}$ - \mathbf{G} is $\mathrm{C}-\mathrm{O}$	2
		[Total: 12]
8 (a)	M1: solubility increases (down the group) M2: because lattice energy decreases faster than does $\Delta \boldsymbol{H}_{\text {hyd }}$ M3: $\Delta H_{\text {sol }} /$ enthalpy of solution becomes more exothermic/less endothermic	3
(b) (i)	Should be the same/similar (enthalpy change), as (both acids) are fully ionised/strong acids	1

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
(ii)	$\begin{aligned} & \mathrm{Ca}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\ & \boldsymbol{x}=\Delta \mathrm{H}_{\mathrm{at}}(\mathrm{Ca})+\mathrm{IE}(1)+\mathrm{IE}(2)-2 \Delta \mathrm{H}_{\mathrm{hyd}}\left(\mathrm{H}^{+}\right)+\Delta \mathrm{H}_{\text {hyd }}\left(\mathrm{Ca}^{2+}\right)-2 \mathrm{IE}(\mathrm{H})-\mathrm{E}(\mathrm{H}-\mathrm{H}) \\ & \boldsymbol{x}=178+590+1150+2(1090)-1576-2(1310)-436 \\ & \boldsymbol{x}=-534 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	4
(c)	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is incompletely ionised/weak acid/weaker acid enthalpy change of ionisation (of $\mathrm{CH}_{3} \mathrm{COOH}$) is $+2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or energy needed to ionise/dissociate $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	2
		[Total: 10]
$9 \quad$ (a)		1

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	42

Question	Answer	Marks
(b)	 H is J is	2
(c)	```step 1: \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}+\mathrm{AlCl}_{3}\) (+ heat) step 2: \(\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3}\) (+ heat) step 3: \(\mathrm{HCN}+\mathrm{NaCN}\) or \(\mathrm{HCN}+\) base or \(\mathrm{HCN}+\mathrm{CN}^{-}\) (steps 4 and 5 could be reversed on J) If J1 step 4 then step 5 J2 step 5 then step 4 step 4: \(\mathrm{H}_{3} \mathrm{O}^{+}+\)heat/aqueous \(\mathrm{HCl}+\) heat step 5: conc \(\mathrm{H}_{2} \mathrm{SO}_{4}+\) heat/ conc \(\mathrm{H}_{3} \mathrm{PO}_{4}+\) heat or \(\mathrm{Al}_{2} \mathrm{O}_{3}+\) heat step 6: \(\mathrm{H}_{2}+\mathrm{Ni}\) (+ heat)```	6
(d)	step 1: electrophilic substitution or alkylation step 6: reduction/hydrogenation/addition	2
		[Total: 11]

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	$\mathbf{9 7 0 1}$	$\mathbf{4 2}$

Question	Answer	Marks
10 (a) (i)	Fe is $\ldots .3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$	1
(ii)		1
(b)	$\begin{aligned} & E^{\ominus} \text { values: } \mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}=+0.15(\mathrm{~V}) ; \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77(\mathrm{~V}) \\ & \text { or } \\ & E_{\text {cell }}=+0.62(\mathrm{~V}) \\ & \left(\mathrm{Sn}^{2+} \text { will reduce } \mathrm{Fe}^{3+}\right) \mathrm{Sn}^{2+}+2 \mathrm{Fe}^{3+} \rightarrow 2 \mathrm{Fe}^{2+} \end{aligned}$	2
(c) (i)	```essential mark \(K_{\text {stab }} /\) stability: \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}>\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{+}\) \(\left(>\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\right)\) observations (violet) \(\rightarrow\) deep-red (deep-red) \(\rightarrow\) colourless (violet) \(\rightarrow\) colourless which stays colourless/does not change```	4
(ii)	ligand displacement/exchange/substitution	1
		[Total: 9]

