Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

Paper 2 AS Level Structured Questions
MARK SCHEME
Maximum Mark: 60
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	22

Question	Answer							Mark	Total
1 (a)	name of element	nucleon number	atomic number	number of protons	number of neutrons	number of electrons	overall charge	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	[4]
	boron	10	5	5	5	5	0		
	nitrogen	15	7	7	8	10	-3		
	lead	208	82	82	126	80	+2		
	lithium	6	3	3	3	2	+1		
(b) (i)	Group 17/VII/7 AND big (owtte) increase/big difference/big gap/big jump/jump in increase/jump in difference after 7th IE							[1]	[1]
(ii)	increases across period due to increasing attraction (of nucleus for electrons) due to increasing nuclear charge/atomic/proton number AND constant/similar shielding/ same (outer) shell/energy level							[1] [1]	[2]
(iii)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$							[1]	[1]
(c) (i)	$(100-99.76-0.04=0.2$							[1]	[1]
(ii)	$\frac{0.2 x+(99.76 \times 16)+(0.04 \times 17)}{100}=16.0044$$x=18$							[1] [1]	[2]
								[Total 11]	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	22

Question	Answer	Mark	Total
2 (a) (i)	enthalpy/energy/heat change when one mole of gaseous atoms is produced from the element in its standard state under standard conditions	[1] [1] [1]	[3]
(ii)	fluorine and chlorine are gases/bromine liquid and iodine solid OR as $\Delta H_{\text {at }}$ for bromine/iodine also includes changes of state	[1]	[1]
(iii)	$\begin{aligned} & \left(1 / 2 \mathrm{C} l_{2}+1 / 2 \mathrm{I}_{2} \rightarrow \mathrm{ICl}\right) \\ & \Delta H_{\mathrm{f}}=\left(1 / 2 \mathrm{E}\left(\mathrm{C} l_{2}\right)+1 / 2 \mathrm{E}\left(\mathrm{I}_{2}\right)\right)-\mathrm{E}(\mathrm{ICl}) \quad \text { OR } \quad \mathrm{E}(\mathrm{ICl})=(151 / 2)+(242 / 2)+24 \\ & \mathrm{E}(\mathrm{ICl})=(+) 220.5 / 221 \end{aligned}$	[1] [1]	[2]
(b) (i)	stronger/more/greater id-id/London/dispersion forces due to increasing numbers of electrons	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(ii)	(intermolecular forces in HF are) hydrogen bonds (which are) stronger (than $\mathrm{vd} W$)/more energy needed to separate molecules OR HF much more polar / F much more electronegative Intermolecular forces in HF stronger (than in $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$)	[1] [1] [1] [1]	[2]
(c) (i)	$\mathbf{P}=$ iodine $/ \mathrm{I}_{2} / \mathrm{I} ; \mathbf{Q}=$ chlorine $/ \mathrm{Cl}_{2} / \mathrm{Cl}$	[1]	[1]
(ii)	weaker H-P than H-Q bond ORA/easier /less energy to break H-P than H-Q ORA due to greater distance/shielding of nucleus from bond pair ORA	[1] [1]	[2]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	22

Question	Answer	Mark	Total
(iii)	$2 \mathrm{HP}($ or 2 HI$) \rightarrow$ (or $\rightleftharpoons) \mathrm{H}_{2}+\mathrm{P}_{2}\left(\right.$ or $\left.\mathrm{I}_{2}\right)$	[1]	[1]
(iv)	$\begin{aligned} & \mathrm{Ag}^{+}(\mathrm{aq})+\mathbf{Q}^{-}(\mathrm{aq})\left(\text { or } \mathrm{Cl}^{-}\right) \rightarrow \mathrm{AgQ}(\mathrm{~s})(\text { or } \mathrm{AgCl}(\mathrm{~s})) \\ & \mathrm{AgQ}(\mathrm{~s}) / \mathrm{AgCl}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(\mathrm{aq})+\mathbf{Q}^{-}(\mathrm{aq}) / \mathrm{Cl}^{-}(\mathrm{aq}) \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(d) (i)	no of Cl increases by one each time/matches group number due to increasing number of valence/outer(most/shell) electrons/oxidation number/valency (of $\mathrm{Mg}, \mathrm{Al}, \mathrm{Si}$)	[1] [1]	[2]
(ii)	$\begin{aligned} & \mathrm{MgCl}_{2}(+\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-} \\ & \mathrm{AlCl}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+3 \mathrm{Cl}^{-} / \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}+\mathrm{H}^{+}+3 \mathrm{Cl}^{-} \\ & \mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{Cl}^{-} \end{aligned}$	[1] [1] [1]	[3]
		[Total 21]	
3 (a)	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{M} 1=\text { species } \\ & \mathrm{M} 2=\text { balancing } \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(b) (i)	$(0.02 \times 32.0 / 1000=) 6.40 \times 10^{-4}$	[1]	[1]
(ii)	$\left(6.4 \times 10^{-4} \times 3=\right) 1.92 \times 10^{-3}$	[1]	[1]
(iii)	$\left(0.242 / 1.92 \times 10^{-3}=\right) 126(.0)$	[1]	[1]
(iv)	$(126-90=36 ; 36 / 18=2$ hence) $x=2$	[1]	[1]
		[Total 6]	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	22

Question	Answer	Mark	Total
4 (a)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}^{2} \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH} \end{aligned}$	[1] [1]	[2]
(b) (i)	Two from 1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ 2. $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3} \quad$ 3. $\mathrm{HCOOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]
(ii)	correct acid + alcohol for either ester 1. methanol + propanoic acid 2. ethanol + ethanoic acid 3. propan-1-ol + methanoic acid (conc) $\mathrm{H}_{2} \mathrm{SO}_{4} /$ (conc) $\mathrm{H}_{3} \mathrm{PO}_{4}$ AND heat/warm/reflux	[1] [1]	[2]
(c)	Peak at 1710-1750 (for ester) due to $\mathrm{C}(=) \mathrm{O}$ Peak at 1500-1680 (for X) due to C(=)C/alkene Peak at 3200-3650 (for X) due to (alcohol) O(-)H	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	[3]
		[Total 9]	
5 (a) (i)	acidified $/ \mathrm{H}^{+}$ AND potassium/sodium dichromate	[1]	[1]
(ii)	distillation (rather than reflux) (ensures aldehyde escapes) to avoid further oxidation/to avoid forming acid/as reflux causes further oxidation	[1] [1]	[2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	22

Question	Answer	Mark	Total
(b)	reaction 3 - (conc) $\mathrm{H}_{2} \mathrm{SO}_{4} /$ (conc) $\mathrm{H}_{3} \mathrm{PO}_{4}$ or $\mathrm{Al}_{2} \mathrm{O}_{3} /$ /pumice/porcelain/porous pot/ceramic AND heat reaction $4-\mathrm{KBr} / \mathrm{NaBr}$ with (conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or (red)P and $\mathrm{Br}_{2} / \mathrm{PBr}_{3}$ AND heat	[1] [1]	[2]
(c) (i)	M1 = lone pair on C of CN^{-}AND curly arrow from lone pair to carbonyl carbon $\mathrm{M} 2=$ dipole on $\mathrm{C}=\mathrm{O}$ AND curly arrow to O from $=$ M3 $=$ intermediate with negative charge M4 $=\quad$ lone pair and curly arrow to H^{+}	$\begin{gathered} {[1]} \\ {[1]} \\ {[1]} \\ {[1]} \end{gathered}$	[4]
(ii)		[1+1]	[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	22

Question	Answer	Mark	Total
(iii)	attack/attach from either side/above or below/from two directions because the carbonyl/ molecule is planar/trigonal/flat/because of the shape of the molecule OR product is chiral/has a chiral carbon/has a carbon attached to four different groups/has a chiral centre/is asymmetric (equal) chance of forming either (of the two optical isomers)/mechanism doesn't distinguish between the two (optical isomers)/able to form either/chance of forming/able to form 50:50 OR because the carbonyl/molecule is planar/trigonal/flat OR because of the shape of the molecule (equal) chance of forming either (of the two optical isomers)/mechanism doesn't distinguish between the two (optical isomers)/able to form either/chance of forming/able to form 50:50	$[1]$	
		[1]	

