Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/21
Paper 2 AS Level Structured Questions
MARK SCHEME
Maximum Mark: 60
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	21

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(ii)	$\begin{aligned} & \frac{(A \times 0.56)+(86 \times 9.86)+(87 \times 7.00)+(88 \times 82.58)}{100}=87.71 \\ & A=84 \end{aligned}$	[1] [1]	[2]
			[16]
2 (a)	D $=\mathrm{Ga} \mathbf{G}=\mathrm{Se}$	[1]	[1]
(b) (i)	$\begin{aligned} & \mathbf{D}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{DCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{M} 1=\text { species; } \\ & \mathrm{M} 2=\text { balancing } \end{aligned}$	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]
(ii)	$\begin{aligned} & \mathrm{D}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaD}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OR} \\ & \left.\mathrm{D}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaD(OHH}\right)_{4} \mathrm{OR} \\ & \mathrm{D}_{2}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{NaDO}_{2}+\mathrm{H}_{2} \mathrm{OOR} \\ & \mathrm{D}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{D}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-} \mathrm{OR} \\ & \mathrm{D}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{D}(\mathrm{OH})_{4}\right]^{-} \mathrm{OR} \\ & \mathrm{D}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{DO}_{2}^{-}+\mathrm{H} 2 \mathrm{O} \\ & \\ & \\ & \mathrm{M} 1 \text { = species; } \\ & \mathrm{M} 2 \text { = balancing } \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(c)	giant ionic/ionic lattice	[1]	[1]
(d)	$\mathrm{GO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{GO}_{3}$	[1]	[1]
			[7]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
3 (a) (i)	bubbles/effervescence/fizzing calcium gets smaller/disappears water turns cloudy / milky calcium sinks	[1] [1] [1] [1]	$\begin{gathered} \max \\ {[3]} \end{gathered}$
(ii)	$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$	[1]	[1]
(iii)	faster bubbling/disappearance of Ba OR no/less precipitate forms (owtte)	[1]	[1]
(b) (i)	 M1 - general layout with products below reactants AND both labelled M2 - E_{a} and $\Delta H /$ energy change/released labelled with vertical lines	[1] [1]	[2]
(ii)	activation energy is high so few/no particles with $E \geqslant E_{\mathrm{a}}$	[1] [1]	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(iii)	high melting / boiling point strong forces (of attraction/between oppositely charged ions)/ strong (ionic) bonding	[1] [1]	[2]
(iv)	MgO is basic / reacts with acid	[1]	[1]
(c) (i)	increases (down the group)	[1]	[1]
(ii)	$\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$	[1]	[1]
(iii)	$2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{CaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$	[1]	[1]
			[15]
4 (a)	$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3} \\ & \mathrm{AND} \\ & \mathrm{CH} \mathrm{H}_{3} \mathrm{CH}=\mathrm{CHCH}_{3} / \mathrm{CH}_{3} \mathrm{CHCHCH}_{3} \end{aligned}$	[1]	[1]
(b)	```CH2}=\mp@subsup{\textrm{CHCH}}{2}{}\mp@subsup{\textrm{CH}}{3}{}/\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{CHCH}}{2}{}\mp@subsup{\textrm{CH}}{3}{ AND (CH3)2 C=CH2}/(\textrm{CH}3\mp@subsup{)}{2}{}\mp@subsup{\textrm{CCH}}{2}{```	[1]	[1]
(c)	 trans-but-2-ene (or E) cis-but-2-ene (or Z)	[1] [1]	[2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(d)	B is $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ OR CH $33=\mathrm{CHCH}_{3} \mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ distinguished by addition of bromine brown/red/orange/yellow to colourless/decolourises with \mathbf{B} (but not \mathbf{A})	[1] [1] [1]	[3]
			[7]
5 (a)		[1] [1]	[2]
(b) (i)	reduction	[1]	[1]
(ii)	disappearance of peak/dip/trough/absorption at 1680-1730 due to (loss of) $\mathrm{C}=\mathrm{O}$ OR peak at 3200-3650 due to (alcohol) O—H (formation)	[1] [1] [1] [1]	[2]
(c) (i)	sodium/potassium hydroxide aqueous	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(ii)	ethanol	[1]	[1]
(d) (i)	(conc) $\mathrm{H}^{+} /($conc $) \mathrm{acid} /($ conc $) \mathrm{H}_{2} \mathrm{SO}_{4} /($ conc $) \mathrm{H}_{3} \mathrm{PO}_{4}$	[1]	[1]
(ii)		[1]	[1]
(iii)	ethyl propanoate	[1]	[1]
(e) (i)	$\begin{aligned} & \mathbf{v}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCHCH} \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3} \\ & \mathbf{T}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(ii)	$\begin{aligned} & \mathbf{V}=\text { geometric(al)/ cis-trans/E-Z } \\ & \mathbf{T}=\text { optical } \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
			[15]

