CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the October/November 2015 series

9701 CHEMISTRY

9701/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	43

(Question	Marking Point	Marks	Total Marks
1	(a)	ionic bonds break/bonds between Mg ²⁺ and C <i>l</i> ⁻ break	2	
		forces/bonds/attractions form between the ions and water		
	(b) (i)	(the energy change) when 1 mole of a substance dissolves in water/becomes aq	1	
	(ii)	$\Delta H^{e}_{latt} MgC l_{2} + \Delta H^{e}_{sol} MgC l_{2} = \Delta H^{e}_{hyd} Mg^{2+} + 2\Delta H^{e}_{lhyd} C l^{-}$ -2524 - 155 = -1925 + 2 $\Delta H^{e}_{hyd} C l^{-}$ = -377 kJ mol ⁻¹	2	
	(iii)	magnesium/Mg is higher charge/sodium/Na is smaller charge	2	
		magnesium/Mg is smaller/sodium/Na is larger		
		Mg stronger attraction for water/Na weaker attraction for water any two		
	(c)	 solubility decreases lattice energy and hydration enthalpy decrease hydration enthalpy decreases more rapidly/is dominant factor so (enthalpy change of) solution becomes less exothermic/more endothermic 	4	
				[Total: 11]
2	(a)	Co $3s^23p^63d^74s^2$ [1] $Co^{3+} 3s^23p^63d^6$ [1]	2	
	(b) (i)	atom or ion, bonded to (one or more), ligands	1	
	(ii)	any two from: two (or more) oxidation states, catalytic activity, coloured ions or compounds	2	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point			Marks	Total Marks
(c)		transition element species formed	type of reaction	5	
	Co ²⁺ (aq) + an excess of NH ₃ (aq)	[Co(NH ₃) ₆] ²⁺ or [Co(NH ₃) ₄] ²⁺ or [Co(NH ₃) ₄ (H ₂ O) ₂] ²⁺	ligand exchange		
	Co ²⁺ (aq) + OH ⁻ (aq)	Co(OH) ₂ or Co(OH) ₂ (H ₂ O) ₄	precipitation or acid-base		
	Co ²⁺ (aq) + S ₂ O ₈ ²⁻ (aq)	[Co(H ₂ O) ₆] ³⁺ or Co ³⁺ or Co ₂ (SO ₄) ₃	redox or oxidation or reduction of S ₂ O ₈ ²⁻		
(d) (i)	Y 13.4/88.9 or 0.15 Ba 41.2/13	7 or 0.3 Cu 28.6/63.5 or	0.45 O 16.8/16 or 1	1	
(ii)	= 7/3 or (+) 2.3			1	
(iii)	two Cu are + 2 and one Cu is + 3	3		1	
					[Total: 13]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point	Marks	Total Marks
3 (a) (i)	 Fe²⁺ and Fe³⁺ (or suitable compounds), salt bridge labelled, one electrode Pt labelled, one solⁿ 1 mol dm⁻³ Cl⁻ (or suitable compound), voltmeter, labelled or V Cl₂, 1 atm or 298K 	4	
	Fe ²⁺ /Fe ³⁺ Pt Cl ² Cl ₂ Cl ₂ Cl ₂		
(ii)	$E_{\text{cell}}^{\text{e}} = 1.36 - 0.77 = 0.59 \text{ V}$	1	
(b)	yellow/orange/brown	1	
(c)	cell voltage increases or becomes more positive $C\mathit{l}_{2}/C\mathit{l}^{-}$ electrode potential increases	2	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	43

Que	stion	Marking Point	Marks	Total Marks
(d) (i)	$H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$	2	
		$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$		
	(ii)	$2H_2 + O_2 \rightarrow 2H_2O$	1	
	(iii)	rechargeable/refillable/longer time between charges/longer battery life/less pollution because H_2O is the product/ O_2 can be got from the air	1	
				[Total: 12]
4 (a) (i)	sketch graph to show a general decrease in m.p	1	
	(ii)	giant covalent (C or Si) to metal/metallic (Sn or Pb)	1	
(b) (i)	can react with an acid or base/alkali or can act as an acid or base or has acidic and basic properties	1	
	(ii)	$SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$ or $SnO_2 + 2NaOH + 2H_2O \rightarrow Na_2Sn(OH)_6$	1	
(с) (i)	E_{cell}^{9} = + 1.18 or E_{cell}^{9} Cr ₂ O ₇ ²⁻ greater/more positive than Sn ⁴⁺ or E_{cell}^{9} (Cr ₂ O ₇ ²⁻ /Cr ³⁺) + 1.33 and E_{cell}^{9} (Sn ⁴⁺ /Sn ²⁺) + 0.15	1	
	(ii)	$Cr_2O_7^{2-} + 3Sn^{2+} + 14H^+ \rightarrow 2 Cr^{3+} + 3Sn^{4+} + 7H_2O$ green	2	
(d) (i)	the same substance gets both oxidised and reduced in the reaction or Ge changes oxid. no. + 2 to 0 and changes oxid. no. + 2 to + 4	1	
	(ii)	(CN) ₂ + 2NaOH → NaOCN/NaCNO + NaCN + H ₂ O	1	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point	Marks	Total Marks
(iii)	${}^{x}_{x}N \xrightarrow{\frac{x}{o}}_{\frac{x}{o}} C \xrightarrow{o} C \xrightarrow{\frac{o}{x}}_{\frac{o}{x}} N^{x}_{x}$	1	
(e) (i)	P P	1	
(ii)	$2P_2$: 2 × P=P = 2 × 489 = 978 kJ mol ⁻¹ and P_4 : 6 × P - P = 6 × -98 = -1188 kJ mol ⁻¹	2	
	$\Delta H = 978 - 1188 = -210 \text{ kJ mol}^{-1}$		
(f) (i)	$3NH_4Cl + 3PCl_5 \rightarrow 12HCl + P_3N_3Cl_6$	1	
(ii)	CI CI CI CI P N CI	1	
			[Total: 15]
5 (a) (i)	$ \begin{array}{ll} \textbf{L} & 2,4\text{-DNPH or Brady's reagent or LiA} \ \textit{l} \ \textit{H}_4 \ \text{or NaBH}_4 \\ \textbf{M} & \text{Fehling's solution or Tollens' reagent or acidified } \ \textit{K}_2 \ \textit{Cr}_2 \ \textit{O}_7 \ \ \text{or MnO}_4^- \\ \textbf{N} & \text{alkaline } \ \textit{I}_2 \\ \end{array} $	3	
(ii)	CH ₃ CH ₂ CO ₂ Na or CH ₃ CH ₂ CO ₂ ⁻ Na ⁺ or CH ₃ CH ₂ CO ₂ H	1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point	Marks	Total Marks
(iii)	yellow precipitate	1	
(iv)	redox or oxidation	1	
(b) (i)	$\begin{array}{c} \delta^{-} \text{ [1] dipoles} \\ \downarrow \\ H_{3}C \\ \hline \\ CH_{2} \\ \hline \\ CH_{2} \\ \hline \\ CH_{3} \\ \hline \\ CH_{3}^{-} \\ \hline \\ \text{[1] intermediate} \\ \hline \\ [1] intermediate$	3	
(ii)	CH ₃ CH ₃	1	
			[Total: 10]

Page 8	Mark Scheme		Paper
	Cambridge International A Level – October/November 2015	9701	43

(Question	Marking Point			Marks	Total Marks
6	(a)	reagent	organic product	non-organic product	4	
		Na	O ₂ N——ONa	H₂/hydrogen		
		Br ₂ (aq)	O ₂ N——OH Br 2 or 3 Br's any position	HBr		
		CH₃COC1 (I)	O_2N — $OCOCH_3$	HC1		
	(b) (i)	H ₂ N NF	$O_3^-Na^+$ $N = N^+$ $SO_3^-Na^+$		2	
		E	F			

Page 9	Mark Scheme		Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point	Marks	Total Marks
(b) (ii)	step 1: NaNO ₂ + HC <i>l</i> or HNO ₂	3	
	step 1: T ≤ 10 °C		
	step 2: alkaline or NaOH(aq) or NaOH solution		
			[Total: 9]
7 (a)	 backbone of sugar-phosphate-sugar-phosphate base bonded to sugar deoxyribose correct label two complementary base pairings e.g A—T or C—G hydrogen bonding/H—bonding between bases, labelled 	5	
(b)	 any two of DNA uncoils or unzips hydrogen bonds break or weaken complementary bases join to form a new strand of DNA 	2	

Page 10	Mark Scheme		Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point	Marks	Total Marks
(c) (i)	restriction enzymes	1	
(ii)	electrophoresis	1	
(iii)	radioactive substance	1	
(iv)	suspect 3	1	
			[Total: 11]
8 (a) (i)	time taken for a compound to travel through the column	1	
(ii)	hydrogen or helium or nitrogen	1	
(iii)	it is more soluble in the stationary phase	1	
(iv)	same functional group or same IMF with stationary phase or same polarity	1	
(v)	% X (= 100 × 22/76) = 29 (28.9)	1	
(b) (i)	TMS or tetramethylsilane or Si(CH ₃) ₄	1	

Page 11	Mark Scheme		Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point					Marks	Total Marks
(i	i)	1			7	4	
	chemical shift δ/ppm	type of proton(s)	number of protons	splitting pattern			
	1.0	CH₃-R	3	triplet			
	2.3	CH₂CO	2	quartet			
	3.7	CH₃O	3	singlet			
(iii	structure / nam	ne of methyl propar	noate O			1	
			H ₃ C CH ₂	O CH ₃			
							[Total: 11]
9 (a)	C ₂₄ (H ₃₄)N ₂ O ₃					1	
(b)	ketone am	nine ester				2	

Page 12	Mark Scheme		Paper
	Cambridge International A Level – October/November 2015	9701	43

Question	Marking Point	Marks	Total Marks
(c) (i)	NH ₂ H H	1	
(ii)	H_2N CO_2H HO CH_3 O CH_3 O	2	
(d)	hydrogen bonding or ion-dipole forces involving lone pair on N atoms, or lone pair on O atoms, or NH ₂ groups, or CO ₂ groups, or C=O groups, with water	2	[Total: 8]